DOI QR코드

DOI QR Code

Experimental Study of Process Chiller for Semiconductor Temperature Control

반도체 공정 온도제어용 칠러의 실험적 연구

  • Cha, Dong-An (Dept. of Mechanical and Information Engineering, Univ. of Seoul) ;
  • Kwon, Oh-Kyung (Energy System Technology Center, Korea Institute of Industrial Technology) ;
  • Oh, Myung-Do (Dept. of Mechanical and Information Engineering, Univ. of Seoul)
  • 차동안 (서울시립대학교 기계정보공학과) ;
  • 권오경 (한국생산기술연구원 에너지설비센터) ;
  • 오명도 (서울시립대학교 기계정보공학과)
  • Received : 2010.09.28
  • Accepted : 2011.02.28
  • Published : 2011.05.01

Abstract

Excessive heat may be generated during the semiconductor manufacturing process. Therefore, precise control of temperature is required to maintain a constant ambient temperature and wafer temperature in the chamber. Compared to an industrial chiller, a semiconductor chiller's power consumption is high because it is in continuous operation for a year. Because of this high power consumption, it is necessary to develop an energy-efficient chiller by optimizing the operation. The competitiveness of domestic products is low because of the high energy consumption. We experimentally investigated a domestic semiconductor by conducting load change, temperature rise and fall, and control precision experiments. The experimental study showed that the chiller had 2.1-3.9 kW of cooling capacity and 0.56-0.93 of EER. The control precisions were ${\pm}1^{\circ}C$ and ${\pm}0.6^{\circ}C$ when the setting temperatures were $0^{\circ}C$ and $30^{\circ}C$ respectively.

반도체 제조를 위한 공정에서는 과도한 열이 발생한다. 따라서 Chamber 내의 웨이퍼나 주변온도를 일정하게 유지할 수 있도록 온도의 정밀제어가 요구된다. 반도체 칠러는 산업용 칠러와는 다르게 운전조건이 24시간 년중 지속되므로 반도체 칠러는 전력소비량이 대단히 크며, 냉동기의 최적 운전제어를 통한 저소비전력 칠러 개발이 대단히 필요하다. 국내에서 판매되고 있는 반도체 칠러는 수입품에 비해 전력소비가 높아 제품 경쟁력이 낮은 실정이다. 이에 따라 본 연구에서는 국내에서 개발된 반도체 칠러에 관한 실험적 연구를 통하여 칠러의 부하변화 실험, 온도 상승 하강실험, 제어정밀도 실험 등을 통하여 칠러의 에너지절감 방향을 제시하고자 한다. 실험을 통하여 칠러의 냉각능력은 2.1~3.9 kW, EER은 0.56~0.93으로 측정되었다. 제어정밀도는 $0^{\circ}C$에서 ${\pm}1^{\circ}C$, $30^{\circ}C$ 이상 설정에서는 ${\pm}0.6^{\circ}C$로 향상되는 것으로 나타났다.

Keywords

References

  1. Park, S. N. and Kim, M. S., 1999, "Performance of Autocascade Refrigeration System Using Carbon Dioxide and R134a," Korean Journal of Airconditioning and Refrigeration Engineering, Vol. 11, No. 6, pp. 880-890.
  2. Prenger, F.C., Hill, D.D., Daney, D. E., Daugherty, M. A., Green, G.F. and Roth, E.W., 1996, "Nitrogen Heat Pipe for Cryocooler Thermal Shunt," Advances in cryogenic engineering, Vol. 41, pp. 147-154. https://doi.org/10.1007/978-1-4613-0373-2_19
  3. Khatri, A. and Boiarski, M., 1997, "A Throttle Cycle Cryocooler Operating with Mixed Gas Refrigerant in 70 K to 120 K Temperature Range," Cryocoolers, Vol. 9, pp. 515-520.
  4. Cha, D. A., Kwon, O. K., Yun, J. H. and Kim, D. Y., 2010, "An Experimental Study on Semiconductor Process Chiller for Energy Saving," Proceeding of the KSME Spring Annual Conference, pp. 371-376.
  5. Cha, D. A. and Kwon, O. K., 2010, "An Experimental Study on Semiconductor Process Chiller for Dual Channel," Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 22, No. 11, pp. 760-766.
  6. Mori, S., 1986, "Refrigeration Apparatus Using Nonazeotropic Refrigerant Mixture," Refrigeration, Vol. 61, No. 702, pp. 1-8.
  7. Kuraoka, Y. and Urao, T., 1989, "The Present and Future of Cryopreservation," Refrigeration, Vol. 63, No. 733, pp. 11-119.
  8. Holman, J.P., 2000, "Experimental Method for Engineer," 7th ed., McGraw-Hill, pp. 51-60.

Cited by

  1. Experimental Study on the Control Characteristics of Each Channel in a Semiconductor Chiller vol.35, pp.12, 2011, https://doi.org/10.3795/KSME-B.2011.35.12.1285