• Title/Summary/Keyword: Heat Insulating Materials

Search Result 113, Processing Time 0.021 seconds

A Study on the Structural Characteristics and Estimation of Refrigerating. Load for the Fruit Storage (청과물저장고의 구조특성 및 냉각부하량 산정에 관한 연구)

  • 이석건;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.1
    • /
    • pp.4038-4051
    • /
    • 1976
  • This study was intended to provide the basic design creteria for the refrigerated storage, and to estimate the required optimum capacity of refrigerator for the different sizes and kinds of the existing fruit storage. The structural characteristics of the existing fruit storages in Pyungtaek-khun of Kyungki-do were surveyed. The average out-door air temperature during the expected storage life after harvesting, was obtained by analyzing the weather information. The heat transfer rates through the different models of storage walls were estimated. The refrigerating load required for different models of fruit storage was analyzed in the basis of out-door air temperature. The results obtained in this study are summarized as follows: 1. The fruit storages surveyed were constructed on-ground, under-ground and sub-ground type buildings. The majority of them being the on-ground buildings are mostly made of earth bricks with double walls. Rice hull was mostly used as the insulating materials for their walls and ceilings. About 42% of the buildings were with the horizontal ceiling, 22% with sloped ceiling, and about 36% without ceiling. About 60% of the storage buildings had floor without using insulated material. They were made of compacted earth. 2. There is no difference in heat transfer among six different types of double walls. The double wall, however, gives much less heat transfer than the single wall. Therefore, the double wall is recommended as the walls of the fruit storage on the point of heat transfer. Especially, in case of the single wall using concrete, the heat transfer is about five time of the double walls. It is evident that concrete is not proper wall material for the fruit storage without using special insulating material. 3. The heat transfer through the storage walls is in inverse proportion to the thickness of rice hull which is mostly used as the insulating material in the surveyed area. It is recommended that the thickness of rice hull used as the insulating material far storage wall is about 20cm in consideration of the decreasing rate of heat transfer and the available storage area. 4. The design refrigerating load for the on-ground storages having 20 pyung area is estimated in 4.07 to 4.16 ton refrigeration for double walls, and 5.23 to 6.97 ton refrigeration for single walls. During the long storage life, however, the average daily refrigerating load is ranged from 0.93 to 0.95 ton refrigeration for double walls, and from 1.15 to 1.47 ton refrigeration for single walls, respectively. 5. In case of single walls, 50.8 to 61.4 percent to total refrigerating load during the long storage life is caused by the heat transferred into the room space through walls, ceiling and floor. On the other hand, 39.1 to 40.7 percent is for the double walls. 6. The design and average daily refrigerating load increases in linear proportion to the size of storage area. As the size increases, the increasing rate of the refrigerating load is raised in proportion to the heat transfer rate of the wall. 7. The refrigerating load during the long storage life has close relationship to the out-door air temperature. The maximum refrigeration load is shown in later May, which is amounted to about 50 percent to the design refrigerating load. 8. It is noted that when the wall material having high heat transfer rate, such as the single wall made of concrete, is used, heating facilities are required for the period of later December to early February.

  • PDF

Characteristics and Development Trends of Heat-Resistant Composites for Flight Propulsion System (비행체 추진기관용 내열 복합재의 특성 및 개발 동향)

  • Hwang, Ki-Young;Park, Jong Kyoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.629-641
    • /
    • 2019
  • In order to limit the temperature rise of the structure to a certain level or less while maintaining the aerodynamic shape of solid rocket nozzle by effectively blocking a large amount of heat introduced by the combustion gas of high temperature and high pressure, the heat-resistant materials such as C/C composite having excellent ablation resistance are applied to a position in contact with the combustion gas, and the heat-insulating materials having a low thermal diffusivity are applied to the backside thereof. SiC/SiC composite, which has excellent oxidation resistance, is applied to gas turbine engines and contributes to increase engine performance due to light weight and heat-resistant improvement. Scramjet, flying at hypersonic speed, has been studying the development of C/SiC structures using the endothermic fuel as a coolant because the intake air temperature is very high. In this paper, characteristics, application examples, and development trends of various heat-resistant composites used in solid rocket nozzles, gas turbine engines, and ramjet/scramjet propulsions were discussed.

Thermal Analysis of the Natural Convection Cooling Type Transformer

  • Oh Yeon-Ho;Song Ki-Dong;Sun Jong-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.142-145
    • /
    • 2005
  • The life expectancy of a transformer largely depends on the temperature-rise it experiences. If the temperature-rise exceeds limits specified in the design standards, the aging of insulating materials is accelerated and the capability of the cooling medium is deteriorated. Consequently, applicable limits for the temperature-rise are essential in designing the transformer and the coolers, demanding the estimation of the transformer's thermal behavior. In order to analyze the temperature characteristics of the transformer, numerical analysis by way of the commercial CFD code has been carried out, and temperature-rise testing to verify computed results was performed. The results obtained in this study show that there is a good agreement between computed outcomes and experimental outcomes.

A Study on the Temperature Controlled Performance of Thermal Reflective Exterior Finishes (열반사성 외장마감재의 온도조절 성능에 관한 연구)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Song, Sung-Yong;Kim, Deuck-Mo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.186-187
    • /
    • 2019
  • In modern times, due to the centralized urban structure, the interval between buildings is narrow and the increase of the heat island phenomenon due to the accumulation of the structure is becoming a social problem. In order to solve these problems, various materials for reducing the surface temperature of buildings are under study. Particularly, in the case of a wall part which is a part directly affected by the outside air of the building, it is a main structural part for determining the room temperature. The purpose of this study was to develop a material that can improve the thermal environment performance of the building by evaluating the temperature control performance of the exterior finishing material using the heat reflecting material as a method for controlling the temperature of the outer wall finishing material.

  • PDF

A Study on the Thermal Insulation Performance of Vacuum Insulation Panel Using Dry Processing Glass Fiber Core (건식 유리섬유 심재를 사용한 진공단열재의 단열특성에 관한 연구)

  • Yoo, Chae-Jung;Kim, Min-Cheol;Go, Seong-Seok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.6
    • /
    • pp.121-128
    • /
    • 2019
  • There is a big move to build zero-energy buildings in the form of passive houses that reduce energy waste worldwide. Korea has set a goal of reducing its greenhouse gas emissions by 37% by 2030 through the activation of green buildings, such as strengthening the energy levels of new buildings and improving the energy efficiency of existing buildings. The use of insulation with high insulation performance is one of the key technologies to realize this, and vacuum insulation is the next generation insulation that blocks the energy flow of the building. In this study, we measured the bonding structure of dry and wet processing glass fiber core materials and compared the insulation performance of vacuum insulation panel. In addition, the insulation performance of vacuum insulation panel was measured according to the thickness of the laminated core. It can be confirmed that the lamination structure of the core and the lamination thickness are important factors for the heat insulating performance of the vacuum insulating panel.

Development of Thermal-Conductivity Measurement System Using Cryocooler (극저온 냉동기를 이용한 열전도도 측정 시스템 개발)

  • Shin, Dong-Won;Kim, Dong-Lak;Yang, Hyung-Suk;Choi, Yeon-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.93-100
    • /
    • 2011
  • The thermal property of insulation material is essential in developing a high-temperature superconductor (HTS) power cable to be operated at around liquid-nitrogen temperature. Unlike metallic materials, nonmetallic materials have a high thermal resistance; therefore, accurate estimate of the heat flow is difficult in the case of nonmetallic materials. The aim of this study is to develop an instrument for precisely measuring the thermal conductivity of insulating materials over a temperature range of 30 K to approximately the room temperature by using a cryocooler. The details of the thermal-conductivity measurement system, including the design and fabrication processes, are described in this paper. In addition, the design optimization to minimize unavoidable heat leakage from room temperature is discussed.

Dielectric/Magnetic Nanowires Synthesized by the Electrospinning Method for Use as High Frequency Electromagnetic Wave Absorber

  • Jwa, Yong-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.14-14
    • /
    • 2009
  • High frequency electromagnetic(EM) waves are increasingly being applied in industries because of saturationat lower frequency bands as a result of huge demand. However, electromagneticinterference (EMI) has become a serious problem, and as a result, highfrequency EM absorbers are now being extensively studied. Also, recentdevelopments in absorber technology have focused on producing absorbers thatare thin, flexible, and strong. Hence, one-dimension ferrous nano-materials area potential research field, because of their interesting electronic andmagnetic properties. Commercially, EM wave absorbing products are made ofcomposites, which blend the insulating polymer with magnetic fillers. Inparticular, the shape of the magnetic fillers, such flaky, acicular, or fibrousmagnetic metal particles, rather than spherical, is essential for synthesizingthin and lightweight EM wave absorbers with higher permeability. High aspectratio materials exhibit a higher permeability value and therefore betterabsorption of the EM wave, because of electromagnetic anisotropy. Nanowires areusually fabricated by drawing, template synthesis, phase separation, selfassembly, and electrospinning with a thermal treatment and reduction process.Producing nanowires by the electrospinning method involves a conventionalsol-gel process that is simple, unique, and cost-effective. In thispresentation, Magnetic nanowire and dielectric materials coated magneticnanowire with a high aspect ratio were successfully synthesized by theelectrospinning process with heat treatment and reduction. In addition toestimating the EM wave absorption ability of the synthesized magnetic anddielectric materials coated magnetic nanowire with a network analyzer, weinvestigated the possibility of using these nanowires as high-frequency EM waveabsorbers. Furthermore, a wide variety of topics will be discussed such as thetransparent conducting nanowire and semiconducting nanowire/tube with theelectrospinning process.

  • PDF

High Thermal Conductivity h-BN/PVA Composite Films for High Power Electronic Packaging Substrate (고출력 전자 패키지 기판용 고열전도 h-BN/PVA 복합필름)

  • Lee, Seong Tae;Kim, Chi Heon;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.95-99
    • /
    • 2018
  • High thermal conductivity films with electrically insulating properties have a great potential for the effective heat transfer as substrate and thermal interface materials in high density and high power electronic packages. There have been lots of studies to achieve high thermal conductivity composites using high thermal conductivity fillers such alumina, aluminum nitride, boron nitride, CNT and graphene, recently. Among them, hexagonal-boron nitride (h-BN) nano-sheet is a promising candidate for high thermal conductivity with electrically insulating filler material. This work presents an enhanced heat transfer properties of ceramic/polymer composite films using h-BN nano-sheets and PVA polymer resins. The h-BN nano-sheets were prepared by a mechanical exfoliation of h-BN flakes using organic media and subsequent ultrasonic treatment. High thermal conductivities over $2.8W/m{\cdot}K$ for transverse and $10W/m{\cdot}K$ for in-plane direction of the cast films were achieved for casted h-BN/PVA composite films. Further improvement of thermal conductivity up to $13.5W/m{\cdot}K$ at in-plane mode was achieved by applying uniaxial compression at the temperature above glass transition of PVA to enhance the alignment of the h-BN nano-sheets.

Effects of Chemical Composition of Ca(OH)2 and Precursors on the Properties of Fast-Curing Geopolymers (Ca(OH)2와 전구체의 화학 조성이 고속경화 지오폴리머의 물성에 미치는 영향)

  • Ko, Hyunseok;Noh, Jung Young;Lim, Hyung Mi
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.690-696
    • /
    • 2019
  • Geopolymer is an alumina silicate-based ceramic material that has good heat-resistance and fire-resistance; it can be cured at room temperature, and thus its manufacturing process is simple. Geopolymer can be used as a reinforcement or floor finish for high-speed curing applications. In this manuscript, we investigate a high-speed curing geopolymer achieved by adding calcium to augment the curing rate. Metakaolin is used as the main raw material, and aqueous solutions of KOH and $K_2SiO_3$ are used as the activators. As a result of optimizing the high bending strength as a target factor for geopolymers with $SiO_2/Al_2O_3$ ratio of 4.1 ~ 4.8, the optimum ranges of the active agent are found to be $0.1{\leq}K_2O/SiO_2{\leq}0.4$ and $10{\leq}H_2O/K_2O{\leq}32.5$, and the optimum range of the curing accelerator is found to be $$0.82{\leq_-}Ca(OH)_2/Al_2O_3{\leq_-}2.87$$. The maximum flexural strength is found to be 1.35 MPa at $Ca(OH)_2/Al_2O_3=2.82$, $K_2O/SiO_2=0.3$, and $H_2O/K_2O=11.3$. The physical and thermal properties are analyzed to validate the applicability of these materials as industrial insulating parts or repairing finishing materials in construction.

Friction Characteristics for Construction thermal insulation manufacturing system Breaker (건축단열재 생산시스템 브레이커 마찰특성)

  • Son, Jae-Hwan;Kang, Hae-Dong;Noh, Kyoo-Ik;Suk, Jang-Geun;Choi, Won-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.61-65
    • /
    • 2014
  • Construction heat insulating material for construction is used in large amounts in industry. In the manufacturing process of this insulation material, a thermal insulation material is completed while a polymer in a liquid state passes through Hall breaker. At this time, the quality and form of a product are determined by a hole in the breaker according to the oil pressure of the fluid and the change of the flow velocity. The friction wear action with regard to partner movement between the two levels of quality of materials affects the performance and the lifetimes of machine parts. In this study of a friction test, SM45C, which is a material used to create brake holes, was used. PVC was used to create the specimen. Moreover, an experiment divided a lubricous state and an unlubricated condition. The resulting value over the load of a pin, the revolving speed of a disk, and the standby state of an experimental result disk could be acquired.