• Title/Summary/Keyword: Heat Increment

Search Result 191, Processing Time 0.032 seconds

A Study on Boiling Heat Transfer in a Impinging Subcooled Water Jet System (충돌과냉수분류(衝突過冷水噴流)의 비등열전달(沸騰熱傳達)에 관한 연구(硏究))

  • Lee, G.J.;Lee, J.S.;Ohm, K.C.;Cho, Y.C.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.1
    • /
    • pp.10-17
    • /
    • 1993
  • This paper describes the boiling heat transfer phenomena to be divided into three regions, nonboiling, nucleate boiling and burn-out in the impinging subcooled water jet system. In the nonboiling region, Nusselt number is a function of Prandtl number, Reynolds number and ${\Delta}T_{sub}/T_{ast}$ In the nucleate boiling region, the heat flux increases with increment of the nozzle exit velocity. But the degree of liquid subcooling does not affect the shape of the nucleate boilng curve. The dimensionless correlations can be expressed in the form of $q{\ell}/K_f{\Delta}T_{ast}=C(Bo{\cdot}C_p{\cdot}{\Delta}T_{sat}/Vo^2)^m{\cdot}(Re/We)^n$. The burn-out heat flux increases linearly with increment of the nozzle exit velocity, but independs of degree of subcooling and the supplementary water height.

  • PDF

Research on the Heat Transfer and Pressure Drop by Installation Conditions of Rectangular Obstacle in a Solar Air Heater Based on CFD (CFD를 활용한 태양열 공기가열기 내 사각저항체 설치 조건에 따른 열전달 및 압력강하에 관한 연구)

  • Choi, Hwi-Ung;Kim, Young-Bok;Son, Chang-Hyo;Yoon, Jung-In;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.77-89
    • /
    • 2019
  • The solar air heater has various performances according to an obstacle installed in the air duct. Many studies on thermal performance have been conducted. But many of these studies were using a kind of rib type obstacle attached at the bottom of absorbing plate, but they are so hard to be manufactured. In this study, characteristics of the heat transfer and pressure drop in the solar air heater with various horizontal rectangular obstacles was investigated by CFD (Computational Fluid Dynamics) analysis. As a result, the heat transfer performance was improved from 1.2 to 3.32 times depending on installation conditions of rectangular obstacle. The pressure drop, however, also increased with increment of heat transfer performance from 2.8 to 180 times only by changing installation conditions of rectangular obstacle. Thus, the performance factor presenting the thermal performance enhancement on the same pressure drop was also confirmed. As a result, the highest value of 0.828 as better performance factor was obtained at the lower height of rectangular obstacle and this value has started to decrease with increment of heat transfer performance. In the end, it could be confirmed that the pressure drop was carried higher than the quantity of improvement of the heat transfer performance when the heat transfer performance was increased by change of installation conditions of rectangular obstacle. Both heat transfer enhancement and pressure drop to be required for system need to be considered before the rectangular obstacles are applied to the solar air heater.

Study on the Surface Temperature and Laser Heat Conduction by the Computer Algorithm (컴퓨터 알고리즘에 의한 표면온도와 레이저 열전도에 관한 연구)

  • Lee, Young-Wook
    • The Journal of Information Technology
    • /
    • v.9 no.3
    • /
    • pp.67-75
    • /
    • 2006
  • This study deals with the computing the temperature change of surface to the increment of time and diffusivity, the heat flux during irradiation of laser. In addition, the computer algorithm for computing the penetration change of the corresponding surface irradiated is developed. The result of this study shows the possibility to treatment of cancer, abnormal cell and biological tissue during irradiation of laser.

  • PDF

Effects of Heat Treatment on the Dietary Fiber Contents of Soybean sprout and Spinach (가열처리에 의한 콩나물과 시금치의 식이섬유 함량변화)

  • Lee, Eun-Young;Kim, Young-A
    • Korean journal of food and cookery science
    • /
    • v.10 no.4
    • /
    • pp.381-385
    • /
    • 1994
  • The dietary fiber contents of soybean sprout and spinach were changed by heat treatment. Before heat treatment, soybean sprout and spinach had larger amount of insoluble dietary fiber than soluble, and similar proportions of insoluble v/s soluble dietary fibers. After heat treatment, the value of insoluble dietary fiber of soybean sprout and spinach was increased significantly, except for microwave heating short time treatment. It is believed that the increment of insoluble dietary fiber is due to Maillard reaction products and resistant starch after heat treatment. The change of soluble dietary fiber contents of soybean sprout and spinach were not consistent in heat treatment. It is supposed that some soluble dietary fiber was destroyed by heat treatment, and some insoluble dietary fiber was hydrolysed or destroyed to be soluble. Total dietary fiber of soybean sprout and spinach was significantly incereased by all heat treatment, except for microwave heating short time of spinach.

  • PDF

A Study on Saturated Boiling Heat Transfer in Upward Rectangular Impinging Water Jet System (연직상향(鉛直上向) 사각충돌수분류(四角衝突水噴流)의 포화비등 열전달에 관한 연구)

  • Lee, J.S.;Ohm, K.C.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.5
    • /
    • pp.395-403
    • /
    • 1991
  • The purpose of this investigation was to characterize nucleate boiling and burn-out heat flux for rectangular free jet with saturated water impinging perpendicularly and upward against a flat uniform heat flux surface. Heat flux measured for Reynolds number based on rectangular nozzle width and for aspect ratio. The result of nucleate boiling heat transfer was presented nondimensional experimental equation including Nusselt, Boiling, Subcooling, Reynolds and Weber number. The effect of aspect ratio of heated surface in the burn-out heat flux had not appeared distinctly. But for the same aspect ratio, burn-out heat flux increased linearly with increment of nozzle exit velocity.

  • PDF

An Experimental Study on Transition and Film Boiling Heat Transfer of Impinging Water Jet (충돌수분류의 천이 및 막비등열전달에 관한 연구)

  • Ohm, Ki-Chan;Seo, Jeong-Yun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.2
    • /
    • pp.87-97
    • /
    • 1985
  • Experimental measurements of the heat flux to a upward impinging water jet on high heated test surface were obtained in the transition and film boiling regimes. Test variables were nozzle outlet velocity, subcooled water temperature and height of supplementary water. Boiling curve of this investigation is similar to a pool boiling curve, but it has one or two cap-shaped peaks in the transition regime. In the film boiling regime, the heat transfer rates are increased along with the increment of nozzle outlet velocity and subcooled temperature. There is optimum height of supplementary water for the augmentation of heat transfer Generalized correlations of boiling heat transfer are presented for maximum heat flux, minimum heat flux and $q_c$ at each supplementary height.

  • PDF

Effect of Exhaust Heat Exchanger on Catalytic Converter Temperature in an SI Engine (가솔린 엔진의 배기 열교환기가 촉매 온도에 미치는 영향에 관한 연구)

  • 이석환;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.9-16
    • /
    • 2004
  • Close-coupled catalyst (CCC) can reduce the engine cold-start emissions by utilizing the energy in the exhaust gas. However, in case the engine is operated at high engine speed and load condition, the catalytic converter may be damaged and eventually deactivated by thermal aging. Excess fuel is sometimes supplied intentionally to lower the exhaust gas temperature avoiding the thermal aging. This sacrifices the fuel economy and exhaust emissions. This paper describes the results of an exhaust heat exchanger to lower the exhaust gas temperature mainly under high load conditions. The heat exchanger was installed between the exhaust manifold and the inlet of close-coupled catalytic converter. The exhaust heat exchanger successfully decreased the exhaust gas temperature, which eliminated the requirement of fuel enrichment under high load conditions. However, the cooling of the exhaust gas through the heat exchanger may cause the deterioration of exhaust emissions at cold start due to the increment of catalyst light-off time.

A Study on Improvement of Engine Cooling System (엔진 냉각 시스템 개선에 관한 연구)

  • Kim, M.H.;Oh, B.W.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.103-116
    • /
    • 1994
  • In this study the behavior of engine cooling loss and overall heat transfer coefficient were studied experimentally using naturally aspirated engine and turbo charged engine. Using turbo charging, heat dissipation was increased because of the density of the mixture was increased with increment of inlet air flow rate. Therefore, cooling loss of turbo charged engine is larger than naturally aspirated engine. As taking the measurement of surface temperature of combustion chamber, gas heat transfer coefficient was calculated and found that it has greatly affected to overall heat transfer coefficient. The empirical formula of overall heat transfer coefficient established in order to predict of engine cooling loss and express only as a function of mean piston velocity.

  • PDF

Simulated Distribution Characteristics of Surface Temperature on Irradiating of a Laser

  • Lee, Young-Wook;Yeon, Sang-Ho
    • International Journal of Contents
    • /
    • v.5 no.2
    • /
    • pp.16-19
    • /
    • 2009
  • In this paper, we concern about the distribution characteristics of surface temperature by the increment of time, diffusivity and heat flux on irradiating of a laser. The penetration depth corresponding to the induced constant heat flux or irradiated laser, is simulated by a computer algorithm. The distribution of temperature versus penetration depth for the variation of time and diffusivity is characterized at the constant heat flux and on irradiating of a laser. The temperature of constant heat flux at the fixed diffusivity or time, is decreased by the pattern of exponential function as the time t or diffusivity a is increased (a=10, 100, 1000). The temperature of constant heat flux is not changed but exponentially fixed with the increasing diffusivity and the fixed time. On the other hand, the temperature of laser at the fixed diffusivity or time is decreased linearly. Our results show that the characteristics of the simulated surface temperature in a semi-infinite solid are similar to the graphs on theoretical consideration.

Fluid Flow and Convective Heat Transfer Characteristics of Al2O3 Nanofluids (알루미나 나노유체의 유동 및 대류 열전달 특성)

  • Hwang, Kyo-Sik;Lee, Ji-Hwan;Lee, Byeong-Ho;Jang, Seok-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.16-20
    • /
    • 2007
  • In this paper, convective heat transfer and flow characteristics of $Al_2O_3$ nanoparticles suspended in water flowing through uniformly heated tubes are experimentally investigated under laminar flow regime. The heat transfer coefficient and the pressure drop of nanoparticles suspended in water are experimentally presented according to the pumping power. In addition, the heat transfer coefficient and the pressure drop of $Al_2O_3$ nanoparticles suspended in water are compared with those of pure water under the fixed pumping power. It is shown that the heat transfer coefficient of $Al_2O_3$ nanofluids with 0.1% volume fraction is enhanced by about 12% although the increment of the pressure drop of those is 4% compared with those of pure water.