• Title/Summary/Keyword: Heat Increment

Search Result 191, Processing Time 0.029 seconds

A Study on the Thermal Elasto-Plastic Analysis of Plated Structures (판구조물의 열탄소성 해석)

  • Kim, B.I.;Jang, C.D.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.68-76
    • /
    • 1997
  • The welding-induced initial imperfections such as residual stresses and initial strains in plated structures of ships and offshore structures can be effectively evaluated by the thermal elasto-plastic analysis method proposed in this paper. In the analysis of heat conduction of plate structures, both the analytical method and the numerical method are used. For the thermal elasto-plastic analysis of plates, the finite element analysis is performed, based on the initial strain method. In the plastic domain during incremental process, the 2nd order terms of stress increments and yield stress increments were considered, so that time increment could be controlled for more stable solution. To measure temperature distribution and angular distortion of plates during welding, bead-on-plate experiment are perform with various heat input and plate thickness. Measured data show good agreement with the calculated results.

  • PDF

Effect of Annealing in Nitrogen Atmosphere on the Characteristics of Ga Doped ZnO Films (Ga doped ZnO 박막의 질소분위기 열처리에 따른 특성 변화)

  • Heo, Sung-Bo;Lee, Young-Jin;Lee, Hak-Min;Kim, Sun Kwang;Kim, Yu Sung;Kong, Young Min;Kim, Dae-Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.6
    • /
    • pp.338-342
    • /
    • 2011
  • Ga doped ZnO (GZO) thin films were deposited with RF magnetron sputtering on glass substrate and then the effect of post deposition annealing at nitrogen atmosphere on the structural, optical and electrical properties of the films was investigated. The post deposition annealing process was conducted for 30 minutes at different temperature of 150, 300 and $450^{\circ}C$, respectively. As increase annealing temperature, GZO films show the increment of the prefer orientation of ZnO (002) diffraction peak in the XRD pattern and the optical transmittance in a visible wave region was also increased, while the electrical sheet resistance was decreased. The figure of merit obtained in this study means that GZO films which vacuum annealed at $450^{\circ}C$ have the highest optoelectrical performance in this study.

EFFECTS OF DIETARY TRYPTOPHAN LEVEL AND FOOD INTAKE ON ENERGY UTILIZATION BY MALE GROWING CHICKS

  • Sugahara, K.;Kubo, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.4
    • /
    • pp.647-651
    • /
    • 1992
  • Two experiments involving comparative slaughter procedures were conducted to see if the decrease in total energy retention (ER) resulted from the decreased food intake in growing chicks fed on a diet containing tryptophan less than the requirement. Ad libitum-feeding a diet containing 50% of tryptophan of a control diet (1.5 g/kg) decreased body weight gain, apparent metabolizable energy intake (AMEI), ER and ER : AMEI ratio. When both the control diet and the 0.75 g/kg tryptophan diet were tube-fed at the two levels of food intake, body weight gain was significantly lower in chicks on the low tryptophan diet than in the control chicks at each level of intake. AME : gross-energy ratio decreased only when the low tryptophan diet was tube-fed at the higher level of intake. Energy retained as protein was significantly decreased by the low tryptophan level and reduction of food intake. Energy retained as fat was affected by food intake. ER and ER : AMEI ratio were unaffected by dietary tryptophan level and were proportional to AMEI. Heat increment of feeding was affected by neither tryptophan nor food intake. These results indicate that the decreased ER in chicks fed on the low tryptophan diet was due mainly to the decreased food intake and not to the decreased efficiency of ME utilization.

Effects of Vapor Injection on a Compressor in a Transcritical CO2 Cycle (초임계 CO2 사이클에서 가스 인젝션이 압축기 성능에 미치는 영향)

  • Kim, Woo-Young;Shim, Jae-Hwi;Lee, Yong-Ho;Kim, Hyun-Jin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.2 s.41
    • /
    • pp.16-21
    • /
    • 2007
  • Potential advantages of using vapor injection in a two stage rotary compressor for a $CO_2$ heat pump water heater system were addressed in this paper by numerical simulation. Vapor separated from a flash tank in the middle of the expansion process can be used for injection into the second stage suction plenum of the compressor to improve the system performance. Vapor injection increases the intermediate pressure between the two stages, thus increasing the first stage compressor work and reducing that of the second stage. As a whole, however, the compressor input power increases due to injected mass flow rate for the second stage. Computer simulation showed that increment of the cooling capacity by vapor injection exceeded that of the compressor work, thus improving the system performance. COP improvement by vapor injection was calculated to be about 5-14% for normal operating conditions. With vapor injection, a maximum COP was found when the displacement volume of the second stage becomes 90-95% of that of the first stage of the compressor.

Aerodynamic control capability of a wing-flap in hypersonic, rarefied regime

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 2015
  • The attitude aerodynamic control is an important subject in the design of an aerospace plane. Usually, at high altitudes, this control is fulfilled by thrusters so that the implementation of an aerodynamic control of the vehicle has the advantage of reducing the amount of thrusters fuel to be loaded on board. In the present paper, the efficiency of a wing-flap has been evaluated considering a NACA 0010 airfoil with a trailing edge flap of length equal to 35% of the chord. Computational tests have been carried out in hypersonic, rarefied flow by a direct simulation Monte Carlo code at the altitudes of 65 and 85 km, in the range of angle of attack 0-40 deg. and with flap deflection equal to 0, 15 and 30 deg.. Effects of the flap deflection have been quantified by the variations of the aerodynamic force and of the longitudinal moment. The shock wave-boundary layer interaction and the shock wave-shock wave interaction have been also considered. A possible interaction of the leading edge shock wave and of the shock wave arising from the vertex of the convex corner, produced on the lower surface of the airfoil when the flap is deflected, generates a shock wave whose intensity is stronger than those of the two interacting shock waves. This produces a consistent increment of pressure and heat flux on the lower surface of the flap, where a thermal protection system is required.

Effect of Mixture Ratio Variation near Chamber Wall in Liquid Rocket Engine

  • Han, Poong-Gyoo;Kim, Kyoung-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.51-60
    • /
    • 2003
  • An experimental research program is being undertaken to develop a regeneratively-cooled experimental thrust chamber of liquid rocket engine using liquefied natural gas and liquid oxygen as propellants. Prior to firing test using a regenerative cooling with liquefied natural gas in this program, several firing tests were conducted with water as a coolant. Experimental thrust chambers with a thrust of about 10tf were developed and their firing test facility was built up. Injector used in the thrust chamber was of shear-coaxial type appropriate for propellants of gas and liquid phase and cooling channels are of milled rectangular configuration. Periodical variation of the soot deposition and discoloration was observed through an eyes' inspection on the inner wall of a combustion chamber and a nozzle after each firing test, and an intuitive concept of the periodical variation of mixture ratio near the inner wall of a combustion chamber and a nozzle at once was brought about and analyzed quantitatively. Thermal heat flux to the coolant was calculated and modified with the periodical variation model of mixture ratio, and the increment of coolant temperature at cooling channels was compared with measured one.

Experiment of Flux pump for High Temperature Superconductor Insert coils of NMR magnets (NMR 자석용 고온 초전도 내부 코일을 위한 플럭스 폄프에 대한 실험)

  • 정상권
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.2
    • /
    • pp.15-20
    • /
    • 2001
  • This paper describes a model flux pump experiment recently performed at the MIT Francis Bitter Magnet Laboratory. The results of the model flux pump will be used in the development of a prototype flux pump that will be couple to a high-temperature superconductor (HTS) insert coil of a high-field NMR (Nuclear Magnetic Resonance) magnet, Such an HTS insert is unlikely to operate in persistent model because of the conductors low index(n) The flux pump can compensate fro field decay in the HTS insert coil and make the insert operate effectively in persistent mode . The flux pump, comprised essentially of a transformer an two switches. all made of superconductor, transfers into the insert coil a fraction of a magnetic energy that is first introduced in the secondary circuit of the transformer by a current supplied to the primary circuit. A model flux pump has been designed. fabricated, and operated to demonstrate that a flux pump can indeed supply a small metered current into a load superconducting magnet. A current increment in the range of microamperes has been measured in the magnet after each pumping action. The superconducting model flux pump is made of Nb$_3$ Sn tape, The pump is placed in a gaseous environment above the liquid helium level to keep its heat dissipation from directly discharged in the liquid: the effluent helium vapor maintains the thermal stability of the flux pump.

  • PDF

Development of Small-Specimen Creep Tester for Life Assessment of High Temperature Components of Power Plant (발전소 고온부의 수명 평가를 위한 소형 시편용 크리프 시험기의 개발)

  • Kim, Hyo-Jin;Jeong, Yong-Geun;Park, Jong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2597-2602
    • /
    • 2000
  • The most effective means of evaluating remaining life is through the creep testing of samples removed from the component. But sampling of large specimen from in-service component is actually impossible. So, sampling device and small-specimen creep tester have been applied. Sampling device has been devised to extract mechanically small samples by hemispherical, diamond -coated cutter from the surface of turbine rotor bores and thick-walled pipes without subsequent weld repairs requiring post weld heat treatment. A method of manufacturing small creep specimen, 2min gage diameter and 10min gage length, using electron beam welding to attach grip section, has been proven. Small-specimen creep tester has been designed to control atmosphere to prevent stress increment by oxidation during experiment. To determine whether the small specimens successfully reproduce the behavior of large specimens, creep rupture tests for small and large specimens have been performed at identical conditions. Creep rupture times based on small specimens have closely agreed within 5% error compared with that of large specimen. The errors in rupture time have decreased at longer test period. This comparison validates the procedure for fabricating and testing on small specimen. This technique offers potential as an efficient method for remaining life assessment by direct sampling from in -service high temperature components.

Thermo-sensitive Electrospun Fibrous Magnetic Composite Sheets

  • Choi, Jungsu;Kim, Jinu;Yang, Heejae;Ko, Frank K.;Kim, Ki Hyeon
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.215-220
    • /
    • 2015
  • The PVDF fibrous composite filled with iron oxide nanoparticles were prepared by using the electrospinning technique. The electrospun composite have the thickness in the range of $60-80{\mu}m$ with the average fibrous diameters of 500-900 nm. The magnetizations of PVDF fibrous composite filled with iron oxide nanoparticles showed 4.5 emu/g, 3.1 emu/g and 1.6 emu/g at 1.5 T of external magnetic field for 20 wt.%, 10 wt.% and 5 wt.% iron oxide nanoparticles, respectively. The heat elevation of the magnetic composite were measured under various AC magnetic fields, frequency and the ambient temperatures. The temperature reached up to $46.3^{\circ}C$ from $36^{\circ}C$ at 128 Oe and 355 kHz for 20 wt.% iron oxide nanoparticles filled in PVDF fibrous composite sheet. The specific absorption rate of theses sheets increased from 0.041 W/g to 0.236 W/g with the increment of AC magnetic field from 90 Oe to 167 Oe at 190 kHz, respectively.

Effects of Age, Environments and Sex on Plasma Metabolite Levels in Young Holstein Calves

  • Sasaki, O.;Yamamoto, N.;Togashi, K.;Minezawa, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.5
    • /
    • pp.637-642
    • /
    • 2002
  • Thirty Holstein calves were used to determine effects of age, environment and sex on blood metabolite concentrations during 1 to 90 d of age. Calves were weaned at 75 d of age. Environmental effects are grouped by the difference in month at birth and site of feeding. Blood samples were obtained every 2 or 3 d. The mean metabolite concentration every 3 d was used for the statistical analysis. Dairy bodyweight gain was not affected by environmental group and sex effect. Concentrations of plasma glucose, nonesterified fatty acids (NEFA), triglyceride, total cholesterol and total ketone changed with growth. These developmental changes in metabolite levels would be caused by ruminal maturation with increment of grain intake. Levels of plasma urea nitrogen, glucose, NEFA, triglyceride and total cholesterol drastically changed during a few weeks after birth, indicating that the physiological state in calves greatly changed during that time. Effects of the environmental group and sex were significant in almost all metabolites. Temperature influenced plasma metabolite concentrations. The plasma metabolite concentrations were affected more intensely by heat stress in the infant period than in the neonatal period.