• Title/Summary/Keyword: Heat Generation Rate

Search Result 342, Processing Time 0.024 seconds

A Study on Compression of Connections in Deep Artificial Neural Networks (인공신경망의 연결압축에 대한 연구)

  • Ahn, Heejune
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.5
    • /
    • pp.17-24
    • /
    • 2017
  • Recently Deep-learning, Technologies using Large or Deep Artificial Neural Networks, have Shown Remarkable Performance, and the Increasing Size of the Network Contributes to its Performance Improvement. However, the Increase in the Size of the Neural Network Leads to an Increase in the Calculation Amount, which Causes Problems Such as Circuit Complexity, Price, Heat Generation, and Real-time Restriction. In This Paper, We Propose and Test a Method to Reduce the Number of Network Connections by Effectively Pruning the Redundancy in the Connection and Showing the Difference between the Performance and the Desired Range of the Original Neural Network. In Particular, we Proposed a Simple Method to Improve the Performance by Re-learning and to Guarantee the Desired Performance by Allocating the Error Rate per Layer in Order to Consider the Difference of each Layer. Experiments have been Performed on a Typical Neural Network Structure such as FCN (full connection network) and CNN (convolution neural network) Structure and Confirmed that the Performance Similar to that of the Original Neural Network can be Obtained by Only about 1/10 Connection.

A Study on the Performance of Pipe Scale Cleaner using Natural Organic Acid (천연 유기산을 이용한 배관 스케일 세정제 성능에 관한 연구)

  • Kang, Hyung Seok;Yang, Won Suk;Kim, Young Il;Kim, Sean Hay;Choi, Dong Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.10
    • /
    • pp.530-537
    • /
    • 2017
  • Scales generated inside pipes cause negative effects on heat transfer performance, pressure loss and flow rate due to increased thermal resistance and reduced flow cross-sectional area. If these scales are not prevented or eliminated, thermal-fluid performance of the facilities can be deteriorated, or in extreme cases, accidents such as explosion due to overheating can occur. There are two ways to remove the scales, physically and chemically. Removing the scales physically needs specific machines which are expensive, and removing them chemically may provoke corrosion or shorten the age of the facilities. In this study, an eco-friendly pipe scale cleaner using natural organic acid is developed by applying the concept of a limestone cave generation. The manufactured scale cleaner is applied to remove the scales in industrial, water heating and urinal pipes. The results show that this cleaner removes scales more effectively and safely compared to existing scale treatments. Scale removal efficiencies of this work is 1.2~10.7 times for industrial pipes and 1.8~15.5 times for boiler water heating pipes higher than those of conventional cleaners.

Experimental Study on Performance Characteristics of Air Driven Scroll Expander (공기구동 스크롤 팽창기 성능특성에 관한 실험적 연구)

  • Song, Wonbin;Kwak, Chul Woo;Kim, Tae Kyun;Kim, Ju Young;Kim, Kwang Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.50-54
    • /
    • 2016
  • The performance of a scroll expander is the most important factor for the efficiency of small scale Organic Rankine cycle waste heat power generation systems. In this research, a scroll compressor was purchased and operated in reverse to function as a scroll expander. With air as a working fluid, a series of performance test were conducted on this expander by varying the inlet and outlet pressure. Secondly, We have tested through 2000 to 3500 rpm rotational speed to find the maximum power and efficiency of the expander. And last, It was observed in the initial experiments that the design of the expander's orbiting scroll wrap partially blocked the fluid intake which may have caused unnecessary flow resistance. To verify this theory, a small part of the scroll wrap was removed and the performance test was redone. It was observed that the lower back pressure assure the higher efficiency and power of expander and the rotational speed that shows maximum adiabetic efficiency of scroll expander is 69% at 2500 rpm. And by modified wrap of the scroll, we could get volume flow rate for 13% to 19% and power for 5% to 18% increased. But the maximum efficiency of the modified scroll was decreased 8%.

Implementation of Visible Light Communication System Modulated by a Switching Driver Circuit of Lighting LED (조명용 LED의 스위칭 구동 회로로 변조되는 가시광 통신 시스템의 구현)

  • Cho, Sang-Ho;Han, Sang-Kyoo;Roh, Chung-Wook;Hong, Sung-Soo;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.8
    • /
    • pp.905-910
    • /
    • 2010
  • In this paper, visible light communication(VLC) system modulated by a switching driver circuit of lighting light emitting diode(LED), not only for illumination but also for optical wireless communication, is implemented. Presented system could overcome the drawbacks of prior linear modulation technique such as low efficiency, heat generation, and limits to realization of high power lighting LED. Experimental results from the realized digital audio system are presented to confirm the superiority of the proposed circuit. Our prototype achieves a transmission data rate of 10 Mbps with a radius of 1.5 meters using 20 W output power, and the signals were detected successfully.

Modeling of Flame Acceleration Considering Complex Confinement Effects in Combustible Gas Mixture (가연성 기체 혼합물에서 복잡한 구조에 따른 화염 가속 모델링)

  • Gwak, Min-Cheol;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.315-324
    • /
    • 2012
  • This paper presents a numerical investigation of the deflagration-to-detonation transition (DDT) of flame acceleration by a shock wave filled with an ethylene/air mixture as the combustible gas, considering geometrical changes by using obstacles and bent tubes. The model used consists of the reactive compressible Navier-Stokes equations and the ghost fluid method (GFM) for complex boundary treatment. Simulations with a variety of bent tubes with obstacles show the generation of hot spots through flame and strong shock-wave interactions, and restrained or accelerated flame propagation due to geometrical effects. In addition, the simulation results show that the DDT occurs with a nearly constant chemical heat-release rate of 20 MJ/($g{\bullet}s$) in our numerical setup. Furthermore, the DDT triggering time can be delayed by the absence of unreacted material together with insufficient pressures and temperatures induced by different flame shapes, although hot spots are formed in the same positions.

A Study on the Thermal Designs of 300 MW-Class IGCC Plant (300 MW급 IGCC 플랜트의 열 설계 연구)

  • 이윤경;서석빈;김종진
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.81-89
    • /
    • 2002
  • IGCC (Integrated Coal Gasification Combined Cycle) is a technology that generates electric power using coal gasification and gasified fuel. Carbon conversion value of IGCC is higher and the influence on the environment is lower than the pulverized coal power plant. Especially, in the nations where the weight of fossil fuel for power generation is remarkably high like in Korea, IGCC stands out as an alternative plan to cope with sudden limitation for the emissions. In this paper, system design study for the commercial IGCC system which the introduction is imminent to Korea was performed. Two cases of entrained gasification process are adapted, one is FHR(full heat recovery) type IGCC system for high efficiency and the other is Quench type IGCC system for low cost. System simulations using common codes like AspenPlus were performed for each system. In the case of Quench system, system option study and sensitivity analysis of the air extraction rate was performed. Thermal performance result for the FHR system is 42.6% (HHV, Net) and for the quench system is 40% (HHV, net) when 75% air is extracted.

Study on the Lubricant Flow Behaviors in the Wet Clutch Pack System of Dual Clutch Transmission (습식 DCT(Dual Clutch Transmission) 클러치 팩 내부에서의 체결 동작에 따른 변속기유 거동 연구)

  • Kim, WooJung;Lee, SangHo;Jang, Siyoul
    • Tribology and Lubricants
    • /
    • v.33 no.3
    • /
    • pp.85-91
    • /
    • 2017
  • This work studies the flow behaviors in the gap between the friction pad and separator in wet-clutch systems. The fluid volume of the lubricant is modeled using the entire system of wet-clutch pack of a dual clutch transmission that has larger outer radius of odd gear shifts and smaller inner radius of even gear shifts. Flow behaviors in the gap of the clutch pad are computed using the gear shift modes that consider the real relative velocities between the friction pad and separator. Flow behaviors in the gap of the disengaged clutch pad are mainly investigated for the wet-clutch system, whereas the engaged clutch pad is modeled with no fluid rate through the contacting surfaces. The developed hydrodynamic fluid pressures and velocity fields in the clutch pad gap are computed to obtain the relevant information for managing flow rates in wet-clutch packs under dual operating conditions during gear shifts. These hydrodynamic pressures and velocity fields are compared on the basis of each gear level and gap location, which is necessary to determine the effects of groove patterns on the friction pad. Shear stresses in the gap locations are also computed on the basis of the gear level for the inner and outer clutch pads. The computed results are compared and used for the design of cooling capacity against frictional heat generation in wet-clutch pack systems.

Investigation of Residual Stress Distributions of Induction Heating Bended Austenitic Stainless Steel (316 Series) Piping (유도 가열 굽힘된 316 계열 오스테나이트 스테인리스 강 배관의 잔류응력 분포 고찰)

  • Kim, Jong Sung;Kim, Kyoung Soo;Oh, Young Jin;Chang, Hyun Young;Park, Heung Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.809-815
    • /
    • 2014
  • The induction heating bending process, which has been recently applied to nuclear piping, can generate residual stresses due to thermomechanical mechanism during the process. This residual stress is one of the crack driving forces that have important effects on crack initiation and propagation. However, previous studies have focused only on geometric shape variations such as the change in thickness and ovality. Moreover, very few studies are available on the effects of process variables on residual stresses. This study investigated the effects of process variables on the residual stress distributions of induction heating bended austenitic stainless steel (316 series) piping using parametric finite element analysis. The results indicated that the heat generation rate and feed velocity have significant effects on the residual stresses whereas the moment and bending angle have insignificant effects.

Potential of gas generation and/or natural gas hydrate formation, and evidences of their presence in near seafloor sediments of the southwestern Ulleung Basin, East Sea (동해 울릉분지 남서부 천부 퇴적층에서의 가스 생성 및 천연가스 하이드레이트 형성 잠재력과 이들의 부존 증거)

  • Ryu, Byong-Jae;Lee, Young-Joo;Kim, Ji-Hoon;Riedel, M.;Hyndman, R.D.;Kim, Il-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.50-53
    • /
    • 2006
  • Regional geophysical surveys and geological cal studies on natural gas hydrate (NGH) in the East Sea were carried out by the Korea Institute of Geoscience and Mineral Resources (KIGAM) from 2000 to 2004. 16 piston cores, 2270 L-km of multi-channel reflection seismic (MCRS) data and 730 L-km of 3.5kHz Chirp data obtained from the southwestern part of the deep-water Ulleung Basin were analyzed in this study. In piston cores, cracks generally developed parallel to bedding suggest significant gas content. The core analyses showed high total organic carbon (TOC) content, sedimentation rate and heat flow of sediments. These are in favor of the general ion of substantial biogenic methane, which can form the NGH within the stability zone of the near seafloor sediments in the study area. The cores generally show also high residual hydrocarbon gas concentrations for the formation of natural gas hydrates The geophysical indicators of the presence of gas and/or NGH such as bottom simulating reflectors (BSRs), seismic blank Bones, pockmarks and gas seeping features were well defined on the MCRS and Chirp data.

  • PDF

Finite Element Analysis for Temperature Distribution Prediction of Steady Rolling Tires with Detailed Tread Pattern (패턴 형상을 고려한 회전하는 타이어의 온도 예측을 위한 유한 요소 해석)

  • Jeong, Kyoung Moon;Kang, Sung Ju;Park, Woo Cheol;Kim, Hyoung Seok;Kim, Kee Woon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.117-125
    • /
    • 2014
  • The temperature distribution of steady state rolling tires with detailed tread blocks is numerically predicted using the three dimensional full patterned tire model. A three dimensional periodic patterned tire model is constructed by copying 1-sector mesh in the circumferential direction. Using the static tire contact analysis, the strain cycles during one revolution are approximated with the strains at Guassian points of the elements which are sector-wise repeated within the same circular ring of elements, by neglecting the tire rolling effect. Based upon the multi-axial fatigue theory, the maximum principal strain is used to represent the combined effect of six strain components on the hysteretic loss. In the following, the deformation due to the inflation and vertical load is calculated using ABAQUS. Then heat generation rate in each element is calculated using an in-house code. Lastly, temperature distribution is calculated using ABAQUS again. Through the numerical experiments, the validity of the proposed prediction method is examined by comparing with the experiment and the temperature distribution of a patterned tire model is compared with those of the main-grooved simple tire model.