• Title/Summary/Keyword: Heat Flux Characteristics

Search Result 745, Processing Time 0.028 seconds

Surface Micro-Climate Analysis Based on Urban Morphological Characteristics: Temperature Deviation Estimation and Evaluation (도시의 지표형태학적 특성에 기반한 지면미기후 분석: 기온추정 및 평가)

  • Yi, Chaeyeon;An, Seung Man;Kim, KyuRang;Kwon, Hyuk-gi;Min, Jae-Sik
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.445-459
    • /
    • 2016
  • Air temperature deviation (ATD) is one of major indicators to represent spatial distribution of urban heat island (UHI), which is induced from the urbanization. The purpose of this study is to evaluate the accuracy of air temperature deviation about Climate Analysis Seoul (CAS) workbench, which had developed by National Institute Meteorological Science and TU Berlin. Comparison and correlation analysis for CAS ATD including meso-scale air temperature deviation, local-scale air temperature deviation, total air temperature deviation, surface heat flux deviation, cold air production deviation among meso-scale numerical modelling variable in 'Seoul Region', micro-scale numerical modelling in 'Detail Region', and CAS workbench variable using observation data in ground stations. Comparison between night time OBS ATD and CAS ATD show that have most close values. Most of observations ($dT_{max}$ and $dT_{min}$) have highly positive ($dT_{SHP}$, $dT_{CA}$, MD, TD, $f_{BS}$, $f_{US}$, $f_{WS}$, $h_B$) and negative ($f_{VS}$, $f_{TV}$, $h_V$, Z) correlations. However, CAS workbench needs further improvement of both observational framework and analytical framework to resolve the problems; (1) night time OBS ATD of has closer values in compare with at high rise mountain area and (2) correlations are very dependable to meteorological scale.

LES for Turbulent Duct Flow with Surface Mass Injection and Vortex Shedding (입구 와류발생과 질량분사가 있는 연소실 내부유동의 LES 해석)

  • Mon, Khin Oo;Koo, Hee-Seok;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.9
    • /
    • pp.745-751
    • /
    • 2012
  • Hybrid rocket shows interesting characteristics of complicated mixing layers developed by interactions between turbulent oxidizer flow and mass flow from surface due to fuel vaporization. In this study, compressible LES with a ring structure attached at the entrance of the combustor are performed. According to one recent report, adding a ring structure in the middle of the combustor helps increasing regression rate. From the numerical results, it is seen that vortex structures near the wall becomes stronger due to the interaction with surface mass injection, and the local heat flux increases due to the vortices. This phenomenon is obviously related to the generation of dimple structures which are seen in the number of experiments. Also, the ring structure at the entrance induces strong vortex flow which enhances heat transfer to the wall surface and mixing between fuel and oxidizer as well as reaction efficiency.

Thermal Phenomena of an N2O Catalyst Bed for Hybrid Rockets Using a Porous Medium Approach (다공성 매질 접근법을 적용한 하이브리드 로켓 N2O 촉매 점화기의 열적 현상)

  • 유우준;김수종;김진곤;장석필
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.89-96
    • /
    • 2006
  • In this study, fluid flow and thermal characteristics in a catalyst bed for nitrous oxide catalytic decomposition which is introduced as a hybrid rocket ignition system for small satellites were theoretically considered. To analyze the thermal phenomena of the catalyst bed, a so-called porous medium approach has been opted for modeling the honeycomb geometry of the catalyst bed. Using a Brinkman-extended Darcy model for fluid flow and the one-equation model for heat transfer, the analytical solutions for both velocity and temperature distributions in the catalyst bed are obtained and compared with experimental data to validate the porous medium approach. Based on the analytical solutions, parameters of engineering importance are identified to be the porosity of the catalyst bed, effective volumetric ratio, the ratio of the radius of the catalyst bed to the radius of a pore, heat flux generated by a heater, and pumping power. Their effects on thermal phenomena of the catalyst bed are studied.

An Experimental Study on the Dispersion Characteristics of Seawater Injection Nozzle for Hull Cooling (선체냉각을 위한 해수분사노즐의 산포특성에 관한 실험 연구)

  • Yoon, Seoktae;Jung, Hoseok;Cho, Yongjin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.767-773
    • /
    • 2017
  • Infrared stealth is an important technology for naval ships. This technology helps improve the anti-detection performance and survivability of naval ships. In general, the infrared signature of naval ships are categorized into internal and external heat source. External signature are generated by ship surface heating by solar flux as well as the complicated heat transfer process with the surrounding weather condition. Modern naval ships are equipped with seawater injection nozzles on the outside for nuclear, biological and, chemical, and these nozzles are used to control external signature. Wide nozzle placement intervals and insufficient injection pressure, however, have reduced seawater dispersion area. To address this problem, nozzle installation standards must be established. In this study, an actual-scale experimental system was implemented to provide the evidence for nozzle installation standards in order to reduce the infrared signature of naval ships. In addition, the environmental conditions of the experiment were set up through computational fluid dynamics considering the ocean climate data and naval ship management conditions of South Korea. The dispersion distance was measured using a high-resolution thermography system. The flow rate, pipe pressure, and dispersion distance were analyzed, and the evidence for the installation of seawater injection nozzles and operation performance standards was suggested.

In-depth investigation of natural convection thermal characteristics of BALI experiment through Eulerian computational fluid dynamics code and comparison with Lagrangian code

  • Hyeongi Moon;Sohyun Park;Eungsoo Kim;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.9-18
    • /
    • 2024
  • In-vessel retention through external reactor vessel cooling (IVR-ERVC) is a severe accident management (SAM) strategy that has been adopted and used in many nuclear reactors such as AP1000, APR1400, and light water reactor etc. Some reactor accidents have raised concerns about nuclear reactors among residents, leading to a decrease in residents' acceptability and many studies on SAM are being conducted. Experiments on IVR-ERVC are almost impossible due to its specificity, so fluid characteristics are analyzed through BALI experiments with similar condition. In this study, computational fluid dynamics (CFD) via Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) for BALI experiments were performed. Steady-state CFD analysis was performed on three turbulence models, and SST k-ω model was in good agreement with the experimental measurement temperature within the maximum error range of 1.9%. LES CFD analysis was performed based on the RANS analysis results and it was confirmed that the temperature and wall heat flux for depth was consistent within an error range of 1.0% with BALI experiment. The LES CFD analysis results were compared with those of the Lagrangian-based solver. LES matched the temperature distribution better than SOPHIA, but SOPHIA calculated the position of boundary between stratified layer and convective layer more accurately. On the other hand, Lagrangian-based solver predicted several small eddy behaviors of the convective layer and LES predicted large vortex behavior. The vibration characteristics near the cooling part of the BALI experimental device were confirmed through Fast Fourier Transform (FFT) investigation. It was found that the power spectral density for pressure at least 10 times higher near the side cooling than near the top cooling.

A Study on Iron Manufacturing and Technology through Analysis Reports of Iron artifacts in the Baekje Area (유물분석 자료를 통한 백제지역의 제철과 철기 제작기술 연구)

  • Kim, Soo-Ki
    • Journal of Conservation Science
    • /
    • v.30 no.4
    • /
    • pp.335-343
    • /
    • 2014
  • This study classified the result of non-metallic inclusion analysis and result of microstructure investigation on the ironware excavated in the Baekje region into Han River, Geum River, and Yeongsan River to estimate the iron making temperature and study the characteristics of regional and temporal characteristics of the heat treatment technology and steel making technology. Regardless of era, bloom iron and sponge iron are judged to be the major method for making as a directreduction process in all three regions. The result of the reinterpretation of the non-metallic inclusion by the oxide ternary constitutional diagram suggest that the temperature inside of the furnace is estimated to be between $1,100{\sim}1,300^{\circ}C$ while making the steel. The magnetic iron ores are the major raw material of steel ore and irons with high $TiO_2$ are estimated to use iron sands. Ironware with $CaO/SiO_2$ rate higher than 0.4% are considered to have artificially added the flux of calcareous materials. It was found that the iron making method is the solid caburizing-steel which caburizes low-carbon steels by the CO gas and $CO_2$ gas created when heating the forging furnace with charcoal. Also, the ironware manufacturers in the Baekje during 3rd century recognized the heat treatment technology as they performed carburizing process and quenching to intentionally increase the strength of necessary parts.

A Study on the Application Scheme of Fire Identification Considering the Heat Release Rate Characteristics of Inflammable Material (가연물의 발열량 특성을 고려한 화재감식 적용방안에 관한 연구)

  • Kang, Jung-Ki;Oh, Jin-Hee;You, Woo-Jun;Ryou, Hong-Sun;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.52-57
    • /
    • 2014
  • The present study suggests the fundamental method for the prediction time of the fire origin by analyzing the combustion phenomenon of inflammable material in the building structure. The heat release rate (HRR) with time variant is evaluated for the interphone as a inflammable material, which is opted from the fire incidents in the stairwell. the fire dynamics simulator (FDS ver. 6.1) is applied in order to analyze the difference of the smoke inflow time to the downstair from the fire event area with various fire pattern. The results show that the maximum inflow time difference for the case of the interphone made from ABS materials is about 4.93 times with the input conditions of heat flux values and the environment in the FDS for the fixed stairwell which composed of total volume $291.3m^3$, floorage $23.3m^2$ and the height of each floor 2.5 m. This research can be practical information for the application method of simulation scheme with experimental data to the fire Identification.

Synthesis and Luminescence Characteristics of SrGa2S4:Eu Green Phosphor for Light Emitting Diodes by Solid-State Method (고상법을 이용한 LED용 SrGa2S4:Eu 녹색 형광체의 합성 및 발광특성)

  • Kim, Jae-Myung;Kim, Kyung-Nam;Park, Joung-Kyu;Kim, Chang-Hae;Jang, Ho-Gyeom
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.4
    • /
    • pp.371-378
    • /
    • 2004
  • The $SrGa_2S_4:Eu^{2+}$ green emitting phosphor has been studied as a luminous device for CRT (Cathode Ray Tube) or FED (Field Emission Display) and EL (Electroluminescence). This phosphor, also, is under noticed for LED (Lighting Emitting Diode) phosphor, which makes use of excitation characteristics of long wavelength region. The $SrGa_2S_4:Eu^{2+}$ phosphor was prepared generally conventional synthesis method using flux. However, this method needs high heat-treated temperature, long reaction time, complex process and harmful $H_2S$or $CS_2$ gas. In this works, therefore, we have synthesized $SrGa_2S_4:Eu^{2+}$ using SrS, $Ga_2S_3$, and EuS as starting materials, and the mixture gas of 5% H2/95% N2 was used to avoid the $H_2S$or $CS_2$. We investigated the luminescence characteristic of $SrGa_2S_4:Eu^{2+}$ phosphor prepared in various synthesis conditions, performed post-treatment and sieving process for application to LED.

Effects of Flight Conditions on IR Signature from Aircraft Exhaust Plume (비행조건에 따른 항공기 배기플룸의 IR 신호 특성)

  • Go, Gun-Yung;Kim, Man-Young;Baek, Seung-Wook
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.58-66
    • /
    • 2012
  • The IR signature and radiative base heating from an aircraft plume have been important factors for aircraft survivability in modern battle fields. In order to enhance the aircraft survivability and reduce the base heating, infrared signatures emitted from an aircraft exhaust plume should be determined. In this work, therefore, IR signatures and radiative base heating characteristics are examined in the plume exhausted from the aircraft with operating at altitude of 5 km in M=0.9 and 1.6, respectively. As a result, it is found that the particular wavelength IR signature has high spectral characteristics because of $H_2O$ and $CO_2$ gases in the plume, and the radiative heat flux coming into the base plane increases with higher Mach number and shorter distance.

An Experimental Study of Film Cooling Characteristics at Supersonic Free Stream Conditions (초음속 주유동 환경에서의 막냉각 특성 시험 연구)

  • Kim, Manshik;Lee, Dong Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.342-348
    • /
    • 2017
  • In this paper, film cooling characteristics at supersonic free stream conditions were examined experimentally by applying an IR-thermography. Film cooling experiments were carried out in a free-jet facility at Mach number of 3.0 and with unit Reynolds number of $42.53{\times}10^6$ and $69.35{\times}10^6$ using wedge shaped film cooling model which has a converging film cooling nozzle. Film cooling efficiency was calculated by measuring the surface temperature of PEEK(Polyether Ether Ketone) and the effects of angle of attack and blowing ratios on the film cooling efficiency were examined. The measured wall temperature was significantly reduced by the film cooling flow compared with the results without the film cooling flow. The usefulness of film cooling was also confirmed by the surface heat flux calculated using the surface temperature history of PEEK. As the blowing ratio increases the protected area of PEEK was also expanded along the direction of free stream and film cooling flow.