• Title/Summary/Keyword: Heat Flow Rate

Search Result 1,928, Processing Time 0.031 seconds

분무냉각에 의한 강판 열처리과정에 있어서 열전달분포의 측정 (Measurements of Heat Transfer Distribution in Spray Cooling of Hot Steel Plate .)

  • 김영찬;유갑종;서태원
    • 설비공학논문집
    • /
    • 제12권10호
    • /
    • pp.886-893
    • /
    • 2000
  • A good understanding of the heat transfer distribution is very important to suppress the deformation of steel products. In this study, the local heat transfer coefficients are experimentally investigated to understand the heat transfer distribution of thick steel plates with even flat spray nozzle. The steel slabs are cooled down from the initial temperature of about $1000^{\circ}C$ , and the local heat transfer coefficients and surface temperatures are calculated from the measured temperature-time history. The results show that the local heat transfer coefficients of spray cooling are dominated by the local droplet flow rate, and in proportion to becoming more distant from the center of heat transfer surface, the local heat transfer coefficients decrease with the decrease of the local droplet flow rate.

  • PDF

열처리 가스유량에 따른 Bi-2223/Ag 초전도 테이프의 특성에 미치는 영향 (The effect of heat treatment mass flow on superconducting property of Bi-2223/Ag Tapes.)

  • 양주생;하동우;이동훈;최정규;황선역;오상수;김상철;김명호
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.96-98
    • /
    • 2003
  • Many of research efforts have been focused on the improvement of critical current density Jc of silver-sheathed Bi-2223 tapes for practical applications of material. Bi-2223 superconducting wires with 55 filaments were fabricated by stacking, drawing process with different heat-treatment histories. After rolling process, Bi-2223 tapes were heat-treatment at 780~826$^{\circ}C$ with variable mass flow rate of mixed gas. In this study, the effect of changes in the variable mass flow rate of mixed gas during the heat treatment of Bi-2223/Ag tapes has been investigated. Distinct differences were observed in the Bi-2223 phase and critical current as flow rate of mixed gas. We could achieve proper conditions of mass flow rate of mixed gas for Ag-alloy clad Bi-2223 superconducting tapes.

  • PDF

지역난방 2차측 유량변화가 내부 열유속 및 에너지소비량에 미치는 영향에 관한 실험적 연구 (The Experimental Study of the Heat Flux and Energy Consumption on Variable Flow Rate for Secondary Side of DHS)

  • 홍성기;조성환
    • 설비공학논문집
    • /
    • 제27권5호
    • /
    • pp.247-253
    • /
    • 2015
  • The presented work demonstrates the effects of flow rate on the secondary side of DHS (District Heating System). Increasing flow rate at the secondary side of DHS decreases energy consumption and time to reach the set-point of the heated room while increasing heat flux on the floor in the heating space. When flow rate increases, the overall heat transfer rate of radiant floor also increases. However, the results also show overall heat transfer rateto not increased linearly and thus the existence of an optimal flow rate for the secondary side of DHS. Control of the radiant floor with hot water may be more effectively accomplished with a combined control strategy that includes heat flux and a temperature set-point. This experimental analysis has been performed using a lab-scaled DHS pilot plant located at Jeonju University in Korea.

프로세스 시뮬레이션에 의한 제 2종 흡수식 열펌프 성능에 관한 연구 (A Study on the Performance of an Absorption Heat Transformer with Process Simulation)

  • 조승연;김영인
    • 대한설비공학회지:설비저널
    • /
    • 제16권3호
    • /
    • pp.295-304
    • /
    • 1987
  • The purpose of this study is to develop a computer model for simulating the water-lit hium bromide absorption heat transformer (AHT) Including all major components and to find the flexibility in operation. The effect of source hot water temperature, cooling water temperature, useful hot water flow rate, cooling water flow rate and evaporator circulation flow rate were investigated. The coefficient of performance (COP), temperature boost $({\Delta}T\;=\;T_A\;-\;Ti)$ and concentration variations can be predicted. The performance study indicates that the performance of AHT increases for the waste hot water temperature increasing and with a decrease of the cooling water temperature. The effect on performances of useful hot water flow rape is significant except on temperature boost. Also the effects on performance of cooling water flow rate and evaporator circulation flow rate are small. It is shown that the computer program is valuable to predict the performance of absorp-tion heat transformer units at various working corditions.

  • PDF

수평식 셸-튜브형 잠열축열조의 축열 및 방열특성에 관한 실험적 연구 (An Experimental Study on Heat Storage and Heat Recovery Characteristics of a Latent Heat Storage Tank with Horizontal Shell and Tube Type)

  • 권영만;서해성;모정하
    • 대한기계학회논문집B
    • /
    • 제24권1호
    • /
    • pp.50-59
    • /
    • 2000
  • An experimental study has been carried out in order to investigate the heat storage characteristics for a latent heat storage tank with horizontal shell and tube type. The heat exchanger consisted of horizontal cylindrical capsules with a staggered tube bank layout. Based on the obtained data, the effects of flow rate and inlet fluid temperature on the melting time and heat storage rates were examined. It is found that the melting time decreased with increase of the flow rate and the inlet temperature. Results also show that at the initial stage of heat transfer the heat storage rate represents the maximum value and rapidly decreases.

냉동시스템의 운전조건에 따른 열교환기 내장형 어큐뮬레이터의 성능 특성 (Performance Characteristics of Accumulator Heat Exchangers with Operating Conditions of a Refrigeration System)

  • 강훈;박차식;전종욱;김용찬
    • 설비공학논문집
    • /
    • 제18권12호
    • /
    • pp.984-991
    • /
    • 2006
  • The applications of multi air-conditioners into multiplex and high-rise buildings have been increased by replacing central air-conditioning systems. The pipe length and altitude difference between the indoor and outdoor units can be increased based on installation conditions, which may increase the possibility of flash gas generation at the expansion device inlet. The flash gas generation causes rapid reduction of refrigerant flow rate passing through the expansion device, yielding lower system efficiency. Accumulator heat exchangers have been widely used in multi air-conditioners in order to minimize flash gas generation and obtain system reliability. However, the studies on the heat transfer characteristics and pressure drops of accumulator heat exchangers are very limited in open literature. In this study, the heat transfer rates and pressure drops of accumulator heat exchangers were measured with refrigerant flow rate and operating conditions by using R-22. The heat transfer rate increased with the increase of refrigerant flow rate, while subcooling decreased. The heat transfer rate enhanced with the reduction of inlet superheat and subcooling due to the increased temperature difference between the accumulator and inner heat exchanger.

상용 흡수식 냉동기에서 LiBr 수용액 유량변화에 따른 영향 (Effect of LiBr solution flow rates in commercial absorption chiller)

  • 최승학;정봉철;남임우;정종수;진성민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.292-297
    • /
    • 2001
  • This paper discusses the effect of varying LiBr solution circuits flow rates for a direct fired double effect commercial absorption chiller in the parallel flow configuration. The effects of solution flow rates have been investigated for generator, condenser, solution heat exchanger, absorber and evaporator. According to the result of this work, it was found that sensible heat rate of generator increases and refrigerant vapor generated in that decreases when inlet solution flow rate of that increases. As solution flow rate of absorber increases, the degree of superheat increases because of decreasing solution heat exchanger efficiency. The flashing vapor at the top of absorber increases in proportion to the degree of superheat whileas decreases cooling capacity inversely.

  • PDF

에어컨 실외기용 휜-관 직교형 열교환기의 열, 유동 해석 및 휜 성능 개선을 위한 연구 (Flow and heat transfer analysis for the performance improvement of cross-flow fin-tube heat exchangers)

  • 안진수;최도형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.183-189
    • /
    • 2004
  • The flow and the heat transfer about the cross-flow fin-tube heat exchanger in an out-door unit of a heat pump system has been numerically Investigated. Using the general purpose analysis code, FLUENT, the Navier-Stokes equations and the energy equation are solved for the three dimensional computation domain that encompasses multiple rows of the fin-tube. The temperature on the fin and tube surface is assumed constant but compensated later through the fin efficiency when predicting the heat-transfer rate. The contact resistance is also taken into consideration. The flow and temperature fields for a wide range of inlet velocity and fin-tube arrangements are examined and the results are presented in the paper. The details of the flow are very well captured and the heat transfer rate for a range of inlet velocity is in excellent agreement with the measured data. The flow solution provides the effective permeability and the inertial resistance factor of the heat exchanger if the exchanger were to be approximated by the porous medium. This information is essential in carrying out the global flow field calculation which, in turn, provides the inlet velocity lot the microscopic temperature-field calculation of the heat exchanger unit.

  • PDF

내부 핀이 부착된 열교환기의 유동장해석 (Analysis of flow and heat transfer in internally finned tube)

  • 정호열;정재택;고형종
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 추계 학술대회논문집
    • /
    • pp.139-144
    • /
    • 1999
  • There have been many studies for heat transfer enhancement. Particularly, the study of flow in heat exchangers which have fin device has been main theme in heat transfer area. Practically, the circular tube which has internal fins is widely used for developing heat transfer rate. In this study, flow and heat transfer analysis of the circular tube with fins are investigated. The height and the number of fins are arbitrary. The flow field is assumed to be laminar. The conformal mapping is used for analytic solution of the laminar flow field. Discretization of governing equation, namely, FDM was used for numerical analysis. The velocity field, flow rate and shear stress are calculated for some numbers of fins in circular tube and for some heights of fin. Temperature fields are plotted along the tube length. It can be shown that the numerical solution agrees with the analytical solution.

  • PDF

지중 및 보조루프의 2차 유체 유량 분배비를 통한 하이브리드 지열히트펌프의 성능 최적화 연구 (Performance Optimization of a Hybrid Ground Source Heat Pump According to Secondary Flow Distribution Ratio between the Ground and the Supplemental Loop)

  • 이주성;박홍희;김원욱;김용찬
    • 설비공학논문집
    • /
    • 제24권2호
    • /
    • pp.102-110
    • /
    • 2012
  • The objective of this study is to improve the performance of a hybrid ground source heat pump (HGSHP) by optimizing the flow distribution ratio of secondary fluid flow rate between a ground loop and a supplemental loop. Initially, a conventional ground source heat pump (GSHP) was tested to determine an optimum flow rate of the secondary fluid. Based on the selected optimum value, the HGSHP was also tested by varying the flow distribution ratio of the secondary fluid flow rate between the ground loop and the supplemental loop, such as 9:1, 7:3, 5:5, and 3:7. The results showed that the optimum flow distribution ratio of the secondary fluid flow rate was 7:3. The COP of the HGSHP was improved by 19% over the GSHP at a flow distribution ratio of 7:3 and an entering water temperature of $40^{\circ}C$.