• Title/Summary/Keyword: Heat Distortion

Search Result 199, Processing Time 0.033 seconds

Study on the Anisotropic Size Change by Austenitizing and Tempering Heat Treatment of STD11 Tool Steel Using Dilatometry (딜라토미터를 이용한 STD11 공구강의 오스테나이징 및 템퍼링 열처리에 따른 치수 변화 이방성 연구)

  • Hong, Ki-Jung;Kang, Won-Guk;Song, Jin-Hwa;Chung, In-Sang;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.800-808
    • /
    • 2008
  • Heat treatment is an important step for tool manufacture, but unavoidably generates dimensional distortion. This study investigated the continuous dimensional change and the anisotropic behavior of STD11 tool steel during austenitizing and tempering heat treatment especially using quenching dilatometer. Dilatometric results represented that the dimensional change along longitudinal direction was larger than that along transverse direction. Anisotropic phase transformation strain was produced in forged STD11 tool steel during heat treatment. Anisotropic dimensional change increased with increasing austenitizing temperature. After tempering, anisotropic distortion was partially reduced. FactSage thermodynamic equilibrium phase simulation and microstructural observation (FE-SEM, TEM) showed that large ($7{\sim}80{\mu}m$) elongated $M_7C_3$ carbides could be formed along rolling direction. The resolution of elongated carbides during austenitizing was found to be related with the change of martensite transformation temperature after heat treatment. Anisotropic size change of STD11 tool steel was mainly attributed to large elongated carbides produced during rolling process. Using dilatometric and metallographic examination, the possible mechanism of the anisotropic size change was also discussed.

The Analysis of Lattice Distortion of $Ba(Zn_{1/3}Ta_{2/3})O_3$ by X-ray Diffraction (X-선 회절분석법에 의한 $Ba(Zn_{1/3}Ta_{2/3})O_3$의 격자 비틀림 측정)

  • Kim, Chong-Don;Kim, In-Tae;Je, Hae-June
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.111-114
    • /
    • 1992
  • Ordering phenomena were observed for Zn and Ta cations of $Ba(Zn_{1/3}Ta_{2/3})O_3$ under particular heat treatments, followed by a considerable lattice distortion. This lattice distortion was measured by X-ray powder diffraction with a precision of higher than 1/10,000. From this investigation, a significant lattice distortion occurred within 30 min. of sintering at $1350^{\circ}C$, and it was increased with sintering time.

  • PDF

The Analysis of Welding Deformation in Large Welded Structure by Using Local & Global Model (Local & Global 모델을 이용한 용접구조물 변형 해석에 관한 연구)

  • Jang Kyoung-Bok;Cho Si-Hoon;Jang Tae-Won
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.25-29
    • /
    • 2004
  • Some industrial steel structures are composed by components linked by several welding joints to constitute an assembly. The main interest of assembly simulation is to evaluate the global distortion of welded structure. The general method, thermo-elasto-plastic analysis, leads to excessive model size and computation time. In this study, a simplified method called "Local and Global approach" was developed to break down this limit and to provide a accurate solution for distortion. Local and global approach is composed of 3 steps; 1) Local simulation of each welding joint on a dedicated mesh (usually very fine due to high thermal gradients), taking into account for the non linearity of the material properties and the moving heat source. 2) Transfer to the global model of the effects of the welding joints by projection of the plastic strain tensors. 3) Elastic simulation to determine final distortions in global model. The welding deformation test for mock-up structure was performed to verify this approach. The predicted welding distortion by this approach had a good agreement with experiment results.

Heat transfer characteristics of redan structure in large-scale test facility STELLA-2

  • Yoon, Jung;Lee, Jewhan;Kim, Hyungmo;Lee, Yong-Bum;Eoh, Jaehyuk
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1109-1118
    • /
    • 2021
  • The construction of STELLA-2 facility is on-going to demonstrate the safety system of PGSFR and to provide comprehensive understanding of transient behavior under DBEs. Considering that most events are single-phase natural circulation flow with slow transient, STELLA-2 was designed with reduced-height of 1/5 length scale. The ratio of volume to surface area in the vessel can relatively increase resulting in excessive heat transfer. Therefore, a steady-state thermal-hydraulic analysis was performed and the effect of design change to reduce the heat transfer through redan was investigated. The heat transfer through single wall redan in STELLA-2 was 3% of the core power, comparable to 1% of the core power in PGSFR. By applying the insulated redan, about 70% of decrease effect was observed. The effect on transient behavior was also evaluated. The conclusion of this study was directly applied to the STELLA-2 design and the modified version is under construction.

Fininte element analysis of electron beam welding considering for moving heat source (이동 열원을 고려한 전자빔 용접의 유한요소해석)

  • Cho, Hae-Yong;Jung, Seok-Young;Kim, Myung-Han;Cho, Chang-Yong;Lee, Je-Hoon;Seo, Jung
    • Laser Solutions
    • /
    • v.4 no.1
    • /
    • pp.21-28
    • /
    • 2001
  • Simulation on the electron beam welding of Al 2219 alloy was carried out by using commercial FEM code MARC, which encounters moving heat sources. Due to axisymmetry of geometry, a half of the cylinder was simulated. A coupled thermo-mechanical analysis was carried out and subroutine for heat flux was substituted in the program. The material properties such as specific heat, heat transfer coefficient and thermal expansion coefficient were given as a function of temperature and the latent heat associated with a given temperature range is considered. As a result, the proper beam power is 60㎸${\times}$60㎃ and welding speed is 1∼1.5 m/min. The residual stress in the heat-affected zone as well as the fusion zone does not increase. It is necessary to use jigs for preventing distortion of cylinder and improving weld quality.

  • PDF

The Thermal Analysis of Brake Disc using the Solid Model and 2D Coupled Model (솔리드모델과 2D 연성모델을 사용한 브레이크 디스크의 열해석)

  • 강상욱;김창진;이대희;김흥섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.93-100
    • /
    • 2003
  • This paper describes the thermoelastic instability arising from friction heat generation in braking and proposes the finite element methods to predict the variation of temperature and thermal deformation. In a conventional disc brake analysis, heat generation is only related with wheel speed and friction material and the interface pressure between disc and pad is assumed constant. But under dynamic braking conditions, the frictional heat causes the thermoelastic distortion that leads to more concentrated contact pressure distribution and hence more and more non-uniform temperature. In this paper, to complete the solution of the thermomechanically coupled problem, the linear relation model between pressure and temperature is proposed and demonstrated in examples of a simple two dimensional contact problem. And the two dimensional model has been extended to an annular three dimensional disc model in order to consider more realistic geometry and to provide a more accurate critical speed for automotive brake systems.

Quantitative Comparisons of the Characteristics of various Rapid Prototypes and RP machines (여러 가지 방식의 쾌속조형물 특성 및 장비 성능의 정량적 비교)

  • Kim, Gi-Dae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1237-1242
    • /
    • 2007
  • For the various RP processes and machines, quantitative comparisons were carried out, which include the variations of roughness according to inclined angle of surface, tensile strength and heat-resistance, shape accuracy affected by curl distortion, manufacturability of submilli-scale structure, and manufacturing speed. It was observed that steeper surface results in smoother roughness except Eden500V of Objet. Specimen made by LOM process showed the best heat-resistance, but that of SL process had heat-resistance only up to $60^{\circ}C$. Generally, tensile strength in the building direction was shown to be smaller than in the scanning direction, but SL process showed the opposite results. RM6000II of CMET was superior in the manufacturing small-scale structure below 0.2mm, and Z510 of Zcorp. and ViperPRO of 3D systems were great in manufacturing speed.

  • PDF

A Study on the Thermal Distortion Analysis of Welded Structures having K/X Groove using shell elements (쉘 요소를 이용한 K및 X개선 용접구조물의 열변형 해석방법에 관한 연구)

  • Ha, Yunsok;Choi, Jiwon
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.120-125
    • /
    • 2012
  • Because ships and offshore structures have very large dimensions and complicated shapes, it is difficult to determine the deformation or internal stress in the structure by simple lab tests. Thus, a rigorous analysis by using the computer simulation technology is essential for obtaining their distortions by considering the entire production process characteristics. The rapid development of computer technology made it possible to analyze the heat transfer phenomena, deformation and phase transformation in the welded joint. For large shell structures, shell elements modeling contributed primarily to this development. But if a welding is done by multi-pass, shell elements whose thickness are unchangeable can hard to describe the local situation. Recently, it was researched how to introduce the imaginary temperature for V grooved multi-layer butt welding in strain-boundary method (a kind of shrinkage methodologies). In the present study, we formulated the imaginary temperature for the double bevel and double V groove by considering the thickness change of each pass through the bead and the thickness directions simultaneously and also demonstrated the feasibility of the formula by applying it to the thermal distortion analysis of the erection process of crane pedestal.

Development of Weft Straightener Using Fabric Pattern Detection Algorithm and Performance Evaluation (원단 패턴 검출 알고리즘을 적용한 원단교정기 개발 및 성능평가)

  • Lee, Jae-Yong;Chung, Yun-Soo;Kim, Dae-Sub;Bae, Gyu-Hyun;Bae, Jae-Sung;Lee, Dae-Hee
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.1
    • /
    • pp.70-79
    • /
    • 2017
  • Weft straightener is an important process to control the final quality of the fabrics. It is needed to calibrate the distorted weft after dyeing process. During various fabric treatment processes, the fabric is almost done with heat treatment through a tenter machine. At this time, weft distortion is occurred with uneven tension distribution. Traditionally, photo sensor is commonly used to detect the weft distortion but it is not applicable for special fabric types such as twill, mesh, combi, etc. In this paper, a new method for detecting the weft distortion using camera is introduced. A new weft straightener simulator is also developed to test the ability of the proposed method. It is shown that the method can be applied for various fabric types.