• 제목/요약/키워드: Heat Chamber

검색결과 734건 처리시간 0.026초

고온부 냉각을 위한 스월챔버내의 유동 및 열전달 해석 (Analysis of Flow and Heat Transfer in Swirl Chamber for Cooling in Hot Section)

  • 이강엽;김형모;한영민;이수용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.71-78
    • /
    • 2002
  • All modem, aerospace gas turbines must operate with hot stage gas temperature several hundreds of degrees hotter than the melting temperatures of the materials used in their construction. Complicated cooling schemes need to be employed in the combustor walls and In the high pressure turbine stages. Internal passages are cast or machined into the hot sections of aero-gas turbine engines and air from the compressor is used for cooling. In many cases, the cooling system is engineered to utilize jets of high velocity air, which impinge on the internal surfaces of the components. They are divided by Impinging cooling method and Vortex cooling method. Specially, Research of new cooling system(Vortex cooling method) that overcome inefficiency of film cooling and limitation of space. The focus of new cooling system that improve greatly cooling efficiency using quantity's cooling air which is less is set in surface heat transfer elevation. Therefore, In this study, the numerical analysis have been performed for characteristic of flow and thermal in the swirl chamber and compared with the flow field measurement by LDV. especially, for understanding of high heat transfer efficiency in vicinity of wall. we considered flow structure and mechanism of vortex and heat transfer characteristic in variation of Reynolds number.

  • PDF

히이트파이프 다발을 이용한 냉축열시스템에서의 대류열전달에 관한 연구 (A Study on the Convective Heat Transfer in a Regenerative Ice Energy System by a Bundle of the Heat-pipes.)

  • 권형정;김경석;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제14권4호
    • /
    • pp.57-66
    • /
    • 1990
  • In the design of an electric power plant, the capacity to meet the peak load demand is one of the important factors to be considered. This peak load usually occurs when the most of the cooling air conditioning systems are being operated during daytime in summer season, which inevitably entails the construction of an additional electric power plant. This study is aimed to carry out a basic experiment for the development of a cooling air conditioning system using the ice energy by the surplus electric power during the night-time. The experimental apparatus consists of four major parts; (1) the heating section consisting of the air duct and I.D. fan, (2) the cold section with the ice chamber, (3) the bundle of heat pipes made in a form of the staggered arrangement with ${C_y}/{d_o}$=2.0 and ${C_x}/{d_o}$=1.73, (4) the refrigerator system to cool down the ice chamber. This study involves an intensive experiment concerning the convective heat transfer of the air flow surrounding the bundle of heat pipes. This major experimental parameters are the amount of working fluid, the velocity of air and the working temperature. The major findings of the present study are as follows; (1) The optimum amount of the working fluid necessary for the horizontal heat pipes is much more than that for the vertical type. (2) The convective heat transfer coefficients of the air are coincided with the empirical equations of Grimson and ${\breve{Z}ukauskas}$. (3) The equation of the mean heat transfer coefficient obtained in the present study is ${N_um}=0.32 {Re_max^{0.63}}$.

  • PDF

적외선 열화성 온도 측정법을 이용하여 살펴본 서브밀리미터 스케일 촉매 연소기에서의 수소-공기 예혼합 가스의 촉매 연소 특성 (An Investigation on Combustion Characteristics of Hydrogen-Air Premixture in a Sub-millimeter Scale Catalytic Combustor using Infrared Thermography)

  • 최원영;권세진
    • 한국연소학회지
    • /
    • 제10권3호
    • /
    • pp.17-24
    • /
    • 2005
  • A sub-millimeter scale catalytic combustor with a simple plate-shaped combustion chamber was fabricated. A porous ceramics support coated with platinum catalyst was placed in the chamber. The combustor has a gallium arsenide window on the top that is transparent to infrared ray. The temperature distribution in the combustion chamber was measured using infrared thermal imager while hydrogen-air premixture is steadily supplied to the combustor. The area where the catalytic reaction took place broaden for higher flow rate and lower equivalence ratio made activated area in the combustion chamber broaden. The amount of coated platinum catalyst did not affect the reaction. Stop of reaction, which is similar to flame quenching of conventional combustion, was investigated. Large content of heat generation and broad activated area are essential criteria to prevent stop of reaction that has a bad effect on the combustor performance.

  • PDF

The Influence of Fuel Spray Characteristics on the Engine Performance and Emission in the Direct Injection Type Diesel Engine

  • Bakar Rosli Abu;Lee Chang-Sik
    • 한국분무공학회지
    • /
    • 제2권2호
    • /
    • pp.43-50
    • /
    • 1997
  • The purpose of this investigation is to carry out, the influence factor on the fuel spray characteristics for improve the engine combustion performance and exhaust omission in direct injection type diesel engine. The fuel properties, fuel spray structure and the shape or the piston surface of diesel engine play an important role of engine combustion process and exhaust emission. In order to obtain the effect of using auxiliary chamber and emulsified fuel on the fuel spray characteristics the experiment un conduct with single cylinder direct injection type diesel engine to examine the engine performance and gas emission. The results of this investigation showed that the increase auxiliary chamber volume and emulsified fuel give an effect on the fuel spray characteristics by reduced the concentration of nitric oxide emission in the combustion chamber. Also it can improve the combustion characteristics such as cylinder pressure, rate of pressure rise and rate of heat release.

  • PDF

부실식 정적연소실내 층상혼합기의 연소특성(II) (Combustion Characteristics of Stratified Mixture in a Constant Volume Combustion Chamber with Sub-chamber (II))

  • 김봉석;권철홍;류정인
    • 한국자동차공학회논문집
    • /
    • 제3권5호
    • /
    • pp.122-134
    • /
    • 1995
  • The present study was investigated combustion characteristics of methane-air mixtures at stratified charge in a constant volume combustion chamber. The main results obtained from this study can be summarized as follows. In case of ${\phi}_s=1.0$, total burning times greatly affected rather than initial time of pressure increase and maximum combustion pressure. In case of ${\phi}_t=1.0$, initial time of pressure increase and total burning times were affected considerably in comparison with the case of ${\phi}_s=1.0$. Also, even the very lean mixture which total equivalence ratio is ${\phi}_t=0.69$(${\phi}_s=1.0$, ${\phi}_m=0.65$), by changing configuration of the critical passage-hole and using a stratified mixture, it is possible to decrease substantially the initial time of pressure increase. total burning times and NOx concentration without deteriorating combustion characteristics such as maximum combustion pressure, rate of heat release etc. in comparison with the use of single chamber(in case of ${\phi}=1.0$) only. Specifically, our trends were revealed remarkably in the case of Type D which is reduced a flame contact area of sub-chamber side of the passage-hole.

  • PDF

IGCC 합성가스 냉각기 GRC의 열유동 및 입자거동 특성에 대한 전산해석 연구 (Numerical Simulations on the Thermal Flow and Particle Behaviors in the Gas Reversal Chamber of a Syngas Cooler for IGCC)

  • 박상빈;예인수;류창국;김봉근
    • 한국연소학회지
    • /
    • 제18권1호
    • /
    • pp.21-26
    • /
    • 2013
  • In the Shell coal gasification process, the syngas produced in a gasifier passes through a syngas cooler for steam production and temperature control for gas cleaning. Fly slag present in the syngas may cause major operational problems such as erosion, slagging, and corrosion, especially in the upper part of the syngas cooler (gas reversal chamber, GRC). This study investigates the flow, heat transfer and particle behaviors in the GRC for a 300 MWe IGCC process using computational fluid dynamics. Three operational loads of 100%, 75% and 50% were considered. The gas and particle flows directly impinged on the wall opposite to the syngas inlet, which may lead to erosion of the membrane wall. The heat transfer to the wall was mainly by convection which was larger on the side wall at the inlet level due to the expansion of the cross-section. In the evaporator below the GRC, the particles were concentrated more on the outer channels, which needs to be considered for alleviation of fouling and blockage.

추력 30톤급 연소기의 냉각 성능

  • 조원국;이수용;조광래
    • 항공우주기술
    • /
    • 제3권1호
    • /
    • pp.197-204
    • /
    • 2004
  • 30톤급 지상시험용 연소기의 재생냉각 유로의 설계를 수행하였다. 사용된 1차원 설계 프로그램은 NAL에서 보고한 고압 연소시험과 모비스 ECC엔진의 물냉각 성능 데이터와 비교하여 열특성 예측 성능을 검증하였다. 본 설계 조건과 유사한 고압에서의 열유속 예측 성능을 확인하였고 물냉각 성능 역시 참고문헌에서 제시하는 것과 동일한 수준의 정확성을 가지는 것으로 검증되었다. 열차폐 코팅 효과를 생략할 경우, 내벽의 최고온도는 약 720 K이 될 것으로 예상되며 냉각유체와 접하는 금속부의 온도는 코킹온도 이하일 것으로 확인되었다. 열차폐 코팅이 적용되었을 경우, 냉각유체 Jet-A1의 예상되는 온도상승은 약 100 K이다.

  • PDF

1 kW급 LNG 스털링 엔진 연소실 수치해석 (CFD STUDY ON THE COMBUSTION CHAMBER OF A 1 kW CLASS STIRLING ENGINE)

  • 안준;이윤식;김혁주
    • 한국전산유체공학회지
    • /
    • 제16권3호
    • /
    • pp.88-94
    • /
    • 2011
  • The availability of the thermal energy has been deeply recognized recently to encourage the cascade usage of thermal energy from combustion. Within the framework, a 1 kW class Stirling engine based cogeneration system has been proposed for a unit of a distributed energy system. The capacity has been designed to be adequate for the domestic usage, which requires high compactness as well as low emission and noise. To develop a highly efficient system with satisfying these requirements, a premixed slot type short flame burner has been proposed and a series of numerical simulation has been performed to establish a design tool for the combustion chamber. The thermal radiation model has been found to highly affect the computational results and a proper resolution to analyze the heat transfer characteristics of the high temperature heat exchanger. Finally, the combustion characteristics of the premixed flame with the metal fiber type burner has been studied.

멀티형 히트펌프 시스템 컴퓨터 시뮬레이션과 실험적 검증 (Multi type heat pump system computer simulation and experimental verification)

  • 한도영;정민영
    • 설비공학논문집
    • /
    • 제12권1호
    • /
    • pp.12-19
    • /
    • 2000
  • The multi type heat pump system may provide more energy savings and better environmental conditions than the single type heat pump system may do. In order to design a multi type heat pump system, it may be recommended to develop the system simulation program, which can predict the characteristics of the system such as unit capacities, power consumptions, and system COP's. In this study, the steady state simulation program of the multi type heat pump system was developed. The results from the simulation program were compared with those from the experimental tests which were performed in the environmental chamber, Cooling tests show 3.11% and 0.94% of error in capacity and COP, and heating tests show 3.30% and 1.90% of error in capacity and COP, respectively. Therefore, the steady state simulation program developed for this study can effectively be used for the design and the performance prediction of the multi type heat pump system.

  • PDF

복사열전달이 고체 추진제의 동적소화에 미치는 영향 (The Effect of Radiative Heat Flux on Dynamic Extinction in Metalized Solid Propellants)

  • 정호걸;이창진
    • 한국항공우주학회지
    • /
    • 제31권2호
    • /
    • pp.72-79
    • /
    • 2003
  • 고체 추진제의 소화를 위한 연소실 압력 강하시 금속입자들에 의한 복사열전달에 동적소화에 미치는 영향을 알아보았다. AP:Binder의 화학반응으로 발생하는 전도열 플럭스를 구하기 위해 화염모델을 사용하였으며, 금속입자들에 복사열 플럭스를 구하기 위해 연소흐름 모델을 사용하였다. 연소실은 크기가 무한대인 경우와 노즐에 의해 제한된 형태 두 가지를 선택하여 계산을 수행하였다. 계산에 사용된 추진제 조성을 AP:Al:CTPB=76:10:14이며 최종압력 이후, 총 열 플럭스 중 복사열 플럭스가 차지하는 비중은 5~6%정도로 나타났다. 연소실 크기가 무한대인 경우, 복사열전달을 고려한 경우의 임계 압력강하율이 복하열을 고려하지 않은 경우보다 45% 크게 나타났다. 이는 복사열전달이 동적소화에 큰 영향을 미치는 것을 보여주는 것이다.