• Title/Summary/Keyword: Heat Capacity

Search Result 1,944, Processing Time 0.032 seconds

Study of the Effects of Ambient Temperature and Car Heater Power on the Train Cabin Temperature (외기 온도와 난방 출력의 철도차량 객실 온도에 대한 영향 연구)

  • Cho, Youngmin;Park, Duck-Shin;Kwon, Soon-Bark;Jung, Woo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5877-5884
    • /
    • 2014
  • Recently, abnormally cold weather has been reported more frequently in winter due to the climate change and abnormal weather changes. On the other hand, the heating capacity of a railcar may be not enough to warm the cabin under severe cold climatic conditions, which is one of the reasons for the passengers' complaints about heating. In this study, the effects of ambient temperature and heater power on the cabin temperature was investigated to obtain the minimum ambient temperature for the tested railcar. The test railcar was placed in a large-climatic chamber, and various ambient temperature conditions were simulated. The effects of the heater output were investigated by monitoring the cabin temperature under a range of heater output conditions. The mean cabin temperature was $14.0^{\circ}C$, which was far lower than the required minimum temperature of $18^{\circ}C$, under a $-10^{\circ}C$ ambient temperature condition with the maximum heat power. When the ambient temperature was set to $0^{\circ}C$ and $10^{\circ}C$, the maximum achievable cabin temperature was $26.1^{\circ}C$ and $34.0^{\circ}C$. Through calculations using the interpolation method, the minimum ambient temperature to maintain an $18^{\circ}C$ cabin temperature was $-6.7^{\circ}C$ for this car. The vertical temperature difference was higher with a higher power output and higher ambient temperature. The maximum vertical temperature difference was higher than $10^{\circ}C$ in some cases. However, the horizontal temperature difference vs. low temperature (< $2^{\circ}C$) was independent of the power output and ambient temperature. As a result, it is very important to reduce the vertical temperature difference to achieve good heating performance.

A Function and Weight Selection of Ecosystem Service Function for the Eco-friendly Protected Horticulture Complex in Agricultural Landscape (시설원예단지의 친환경적 조성을 위한 생태계서비스 기능 및 가중치 산정)

  • SON, Jinkwan;KONG, Minjae;SHIN, Yukung;YUN, Sungwook;KANG, Donghyeon;Park, Minjung;LEE, Siyoung
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.533-541
    • /
    • 2017
  • Agricultural landscape has many ecosystem service functions. However, the development of the horticulture complex has no consideration for environmental conservation. Therefore, we analyzed the priorities of ecosystem service functions required for the composition. The study was conducted in three stages. As a result of the first survey, 17 functions were selected to be improved. In the second survey, 12 functions were selected excluding 5 functions. Finally, 1. Measures for water purification, 2. Groundwater recharge plan, 3. Surface water storage space, 4. Flood control measures, 5. Vegetation diversity space, 6. Carbon emission reduction plan, 7. Aquatic insect habitat space, 8. Amphibian reptiles 9. Landscape and Waste Management, 10. Bird Species Space, 11. Heat Island Mitigation Plan, 12. Experience / Ecological Education Plan. We proposed the structure, capacity, flow rate, arrangement and form of the water treatment facility to improve water quality by improving the function. We proposed a reservoir space of 7-10% for groundwater recharge. The development of reservoir and storage facilities suitable for the Korean situation is suggested for the surface water storage and flood control measures. And proposed to secure a green space for the climate cycle. Proposed habitat and nutrient discharge management for biodiversity. We propose green area development and wetland development to improve the landscape, and put into the facilities for experiential education. The results of the research can be utilized for the development and improvement of the horticultural complex.

Behaviors of the High-profile Arch Soil-steel Structure During Construction (높은 아치형 지중강판 구조물의 시공 중 거동 분석)

  • 이종구;조성민;김경석;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.71-84
    • /
    • 2003
  • The metallic shell of soil-steel structures are so weak in bending moment that it should sustain the applied load by the interaction of the backfill soil around the structures. The shell can be subjected to excessive bending moment during side backfilling or under live-load when the soil cover is less than the minimum value. The current design code specifies the allowable deformation and Duncan(1979) and McGrath et al.(2001) suggested the strength analysis methods to limit the moments by the plastic capacity of the shell. However, the allowable deformation is an empirically determined value and the strength analysis methods are based on the results of FE analysis, hence the experimental verification is necessary. In this study, the full-scale tests were conducted on the high-profile arch to investigate its behaviors during backfilling and under static live-loads. Based on the measurements, the allowable deformation of the tested structure could be estimated to be 1.45% of rise, which is smaller than the specified allowable deformation. The comparison between the measurements and the results of two strength analyses indicate that Duncan underestimates the earth-load moment and overestimates the live-load moment, while McGrath et al. predicts both values close to the actual values. However, as the predicted factors of safeties using two methods coincide with the actual factor of safety, it can be concluded that both methods can predict the structural stability under live-loads adequately when the cover is less than the minimum.

Enhanced High-Temperature Performance of LiNi0.6Co0.2Mn0.2O2 Positive Electrode Materials by the Addition of nano-Al2O3 during the Synthetic Process (LiNi0.6Co0.2Mn0.2O2 양극 활물질의 합성공정 중 나노크기 알루미나 추가에 의한 고온수명 개선)

  • Park, Ji Min;Kim, Daeun;Kim, Hae Bin;Bae, Joong Ho;Lee, Ye-Ji;Myoung, Jae In;Hwang, Eunkyoung;Yim, Taeeun;Song, Jun Ho;Yu, Ji-Sang;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.80-86
    • /
    • 2016
  • High Ni content layered oxide materials for the positive electrode in lithium-ion batteries have high specific capacity. However, their poor electrochemical and thermal stability at elevated temperature restrict the practical use. A small amount of $Al_2O_3$ was added to the mixture of transition metal hydroxide and lithium hydroxide. The $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ was simultaneously doped and coated with $Al_2O_3$ during heat-treatment. Electrochemical characteristics of modified $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ were evaluated by the galvanostatic cycling and the LSTA(linear sweep thermmametry) at the constant voltage conditions. The nano-sized $Al_2O_3$ added materials show better cycle performance at elevated temperature than that of micro-sized $Al_2O_3$. As the added amount of nano-$Al_2O_3$ increased, the thermal stability of electrode also enhanced, but the use of 2.5 mol% Al showed the best high temperature performance.

Improved Electrochemical Performance and Minimized Residual Li on LiNi0.6Co0.2Mn0.2O2 Active Material Using KCl (KCl을 사용한 LiNi0.6Co0.2Mn0.2O2계 양극활물질의 잔류리튬 저감 및 전기화학특성 개선)

  • Yoo, Gi-Won;Shin, Mi-Ra;Shin, Tae-Myung;Hong, Tae-Whan;Kim, Hong-kyeong
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • Using a precursor of $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ as a starting material, a surface-modified cathode material was obtained by coating with KCl, where the added KCl reduces residual Li compounds such as $Li_2CO_3$ and LiOH, on the surface. The resulting electrochemical properties were investigated. The amounts of $Li_2CO_3$ and LiOH decreased from 8,464 ppm to 1,639 ppm and from 8,088 ppm to 6,287 ppm, respectively, with 1 wt% KCl added $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ that had been calcined at $800^{\circ}C$. X-ray diffraction results revealed that 1 wt% of KCl added $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ did not affect the parent structure but enhanced the development of hexagonal crystallites. Additionally, the charge transfer resistance ($R_{ct}$) decreased dramatically from $225{\Omega}$ to $99{\Omega}$, and the discharge capacity increased to 182.73mAh/g. Using atomic force microscopy, we observed that the surface area decreased by half because of the exothermic heat released by the Li residues. The reduced surface area protects the cathode material from reacting with the electrolyte and hinders the development of a solid electrolyte interphase (SEI) film on the surface of the oxide particles. Finally, we found that the introduction of KCl into $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ is a very effective method of enhancing the electrochemical properties of this active material by reducing the residual Li. To the best of our knowledge, this report is the first to demonstrate this phenomenon.

Physicochemical Properties of Chestnut Starch According to the Processing Method (전분 제조방법에 따른 밤전분의 이화학적 특성)

  • Kim, Yong-Doo;Choi, Ok-Ja;Shim, Ki-Hoon;Cho, In-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.3
    • /
    • pp.366-372
    • /
    • 2006
  • This study is to investigate the physicochemical properties of differently pretreated chestnut starches during starch isolation and to examine their gelatinization properties by both heat and alkali treatments. One kind is starch A made by alkali method from peeled chestnut. The other is starch B made from chestnut with the outer layer. The results are as follows. Starch A has higher water binding capacity of 86.9% than starch B with 80.66%. Swelling powers of both starch A and B increased rapidly from $60^{\circ}C\;to\;80^{\circ}C$ in both, and since then it has changed a bit. Both began to show their solubility at $60^{\circ}C$ and increased continuously as the temperature went up. Starch A has higher swelling power and solubility than starch B. In iodine reaction, starch A has higher ${\lambda}max$ and absorbance at ${\lambda}max$ than starch B. X-ray diffraction patterns showed that starch A is type $C_b$ and that starch B is type B. Starch B has higher relative crystallinity of 37.0% than starch A with 36.2%. The results by differential scanning calorimetry revealed that starch A gelatinized from $66.95^{\circ}C$ to $77.5^{\circ}C$ and its enthalpy is 2.04 cal/g. And starch B gelatinized from $67.09^{\circ}C\;to\;77.5^{\circ}C$, and its enthalpy is 2.29 cal/g. Amylograms of chestnut starch at 6.5% concentration indicated that starch B needs higher onset temperature when beginning to gelatinize than starch A does. But starch A shows much higher peak viscosity, breakdown and setback than starch B does. Starch A shows higher viscosity, gel volume, and optical transmittance in gelatinization properties by alkali than starch B does.

Effects of Dietary Locally Grown Herbs (Mentha piperascens, Rubus coreanus, Tagetes patula) on the Growth Performance and Meat Quality of Broiler Chicken (국내 자생 약용식물자원(박하, 복분자 및 매리골드)의 첨가 급여가 육계의 생산성과 육질에 미치는 영향)

  • Kim, Yong-Ran;Lee, Bo-Keun;Kim, Jae-Young;Kim, Ji-Suk;Lee, Wan-Seob;Lee, So-Yeon;Kim, Eun-Jib;Ahn, Byoung-Ki;Kang, Chang-Won
    • Food Science of Animal Resources
    • /
    • v.29 no.2
    • /
    • pp.168-177
    • /
    • 2009
  • This study was conducted to investigate the dietary effects of locally grown herbs (Mentha piperascens, PM; Rubus coreanus, RC; Tagetes patula, MG) on the growth performance and meat quality of broiler chicken. A total of 600 1-d-old Ross male broiler chicks were divided into eight groups and were fed control diets (antibiotics-medicated or non-medicated commercial diets) or experimental diets (non-medicated diets containing 0.3 or 0.5% PM, 0.3 or 0.5% RC, or 0.3 or 0.5% MG) for 5wk. The body weight gains and feed conversion rates (FCRs) in all the groups that were fed diets containing PM, RC, or MG were significantly improved compared to those in the non-medicated control group (p<0.05). The relative weights of various organs, the serum cholesterol levels, and the GOT/GPT activities in all the groups were also not significantly different. The superoxide dismutase (SOD)-like activities in the groups that were fed diets containing 0.3% PM or 0.3% MG were significantly increased compared to those in the non-medicated control group (p<0.05). The number of cecal lactic-acid bacteria in the groups that were fed diets containing 0.3% PM or 0.5% RC tended to increase. The malondialdehyde contents in the leg muscles were significantly lowered by feeding with PM or MG (p<0.05). The physicochemical properties of the edible meat, including the shear force, water-holding capacity, heat loss, pH, and muscle color degrees $(CIEL^*.\;a^*.\;b^*)$, were not affected by the dietary treatments. It has been suggested that spontaneous Korean plants promote the growth of broilers and may delay lipid oxidation in edible muscles without any negative effect when added in broiler diets.

A Study on the Effects of Temperature Rise of Irrigation Water Passed Through the Warm Water Pool. (온수지에 의한 관개용수의 수온상승 효과에 관한 연구)

  • 연규석;최예환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4323-4337
    • /
    • 1977
  • The study was to estimate the effect of the rise of water temperature in the warm water pool and to make contribution to the establishment of reducing to a damage of cool water as well as to the planning for warm water pool. This observation was performed in Wudu warm water pool located at Wudu-Dong of Chuncheon for two years from 1975 to 1976. The results were showed as follows; 1. The daily variation of water temperature was the least for inset (No.1; 0.6$^{\circ}C$) the second for middle overflow (No2: 3$^{\circ}C$, No.3; 2.3$^{\circ}C$) and another for outflet (No.4; 3.6$^{\circ}C$, No.5; 3.8$^{\circ}C$) And the highest reaching time of water temperature in each block was later about 1 hour than the time at which air temperature happend in the daytime. So, the variation of water temperature was sensitive to the variation of air temperature 2. The monthly variation of water temperature at each measuring point was plotted to be increased with increase in air temperature till August (Mean monthly rising degree; No.1; 1.15$^{\circ}C$, No.2; 1.7$^{\circ}C$, No.3; 1.73$^{\circ}C$, No.4; 2.08$^{\circ}C$, No.5; 2.0$^{\circ}C$), and expressed gradually descended influence upon water temperature after August. 3. The mean temperature of inflow folwed in warm Water pool was 7.5∼12.5$^{\circ}C$, and outflow temperature was described as 13.4∼22.5$^{\circ}C$ to be climbed. And So, the rising interval of water temperature was shown as 6.7∼10.4$^{\circ}C$. 4. The correlation between the rising of water temperature and the weather condition was found out highly significant. As the result, their correlation coefficents of water temperature depending on mean air temperature, ground temperature, wind velocity and relative humidity were to be 0.93, 0.90, - 0.83 and 0.71 respectively. But there was no confrimation of the correlation on the clouds, sunlight time, volume of evaporation, and heat capacity of horizontal place. 5. The water temperature of balance during the period of rice growing in Chuncheon district was shown as table 10, and the mean of whole period was calculated as about 23.7$^{\circ}C$. 6. The observed value of the outflow temperature passed through the warm water pool was higher than that of computed, the mean difference between two value was marked as 1.15$^{\circ}C$ for blockl, 1.18$^{\circ}C$ for block2, and 0.47$^{\circ}C$ for block3, respectivly. Therefore, the ratio on the rising degree between the observed and computed were shown as 53%, 44%, and 18%, mean 38% through each block warm water pool (referring item $\circled9$ of table 11,12, and 13). Accordingly, formula (4) in order to fit for each block warm water pool was transfromed as follow; {{{{ { theta }_{w } - { theta }_{ 0} =[1-exp LEFT { { 1-(1+2 varphi )} over {cp } CDOT { A} over { q} RIGHT } ] TIMES ( { theta }_{w } - { theta }_{ 0}) TIMES C }}}} Here, correction coefficinent was computed 1.38, and being substituted 1.38 for C in preceding formula, the expected water temperature will be calculated to be able to irrigate the rice paddy. As the result, we can apply the coefficient in order to plan and to construct a new warm water pool.

  • PDF

Effect of Soil Moisture Content on Photosynthesis and Root Yield of Panax ginseng C. A. Meyer Seedling (토양수분함량이 묘삼의 광합성 및 근 수량에 미치는 영향)

  • Lee, Sung-Woo;Hyun, Dong-Yun;Park, Chun-Geun;Kim, Tae-Soo;Yeon, Byeong-Yeol;Kim, Chung-Guk;Cha, Seon-Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.6
    • /
    • pp.367-370
    • /
    • 2007
  • To make the soil moisture proper is the important factor in the seedbed cultivation of Yangjik for producing a good quality of ginseng seedling. This study was carries out to investigate the effect of soil moisture on photosynthesis and yield of ginseng seedling under the different condition of the soil moisture, such as $100{\sim}400$ mbar. Photosynthesis rate was decreased gradually by the reduction of soil moisture, and in particular it was decreased distinctly under the lower condition of soil moisture, such as $300{\sim}400$ mbar. Photosynthesis rate in air temperature of $30^{\circ}C$ was decreased more distinct than that of $25^{\circ}C$, Light saturation point of leaves was at the quantum of $600{\mu}mol/m^3/s$ at $25^{\circ}C$ while it was decreased by $300{\mu}mol/m^3/s$ at $30^{\circ}C$ according to the increase of air temperature. Respiration rate was increased by the increase of quantum, and decreased by the reduction of soil moisture. Respiration rate under the condition of high quantum was increased regardless of air temperature, but it was decreased distinctly under the condition of low soil moisture and high air temperature, such as 400 mbar at $30^{\circ}C$. There were a gradual decrease by the reduction of soil moisture in leaf length, leaf width, chlorophyll content, and water content of leaves, but heat injury ratio was increased distinctly by the reduction of it. Total root weight, root weight per plant, the yield of usable seedling were decreased by the reduction of soil moisture, and optimal content of soil moisture to produce a good quality of seedling was 63% of field capacity or 18.9% in absolute soil moisture content.

A review on the design requirement of temperature in high-level nuclear waste disposal system: based on bentonite buffer (고준위폐기물처분시스템 설계 제한온도 설정에 관한 기술현황 분석: 벤토나이트 완충재를 중심으로)

  • Kim, Jin-Seop;Cho, Won-Jin;Park, Seunghun;Kim, Geon-Young;Baik, Min-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.587-609
    • /
    • 2019
  • Short-and long-term stabilities of bentonite, favored material as buffer in geological repositories for high-level waste were reviewed in this paper in addition to alternative design concepts of buffer to mitigate the thermal load from decay heat of SF (Spent Fuel) and further increase the disposal efficiency. It is generally reported that the irreversible changes in structure, hydraulic behavior, and swelling capacity are produced due to temperature increase and vapor flow between $150{\sim}250^{\circ}C$. Provided that the maximum temperature of bentonite is less than $150^{\circ}C$, however, the effects of temperature on the material, structural, and mineralogical stability seems to be minor. The maximum temperature in disposal system will constrain and determine the amount of waste to be disposed per unit area and be regarded as an important design parameter influencing the availability of disposal site. Thus, it is necessary to identify the effects of high temperature on the performance of buffer and allow for the thermal constraint greater than $100^{\circ}C$. In addition, the development of high-performance EBS (Engineered Barrier System) such as composite bentonite buffer mixed with graphite or silica and multi-layered buffer (i.e., highly thermal-conductive layer or insulating layer) should be taken into account to enhance the disposal efficiency in parallel with the development of multilayer repository. This will contribute to increase of reliability and securing the acceptance of the people with regard to a high-level waste disposal.