• Title/Summary/Keyword: Heat Balance

Search Result 657, Processing Time 0.033 seconds

An One-zone Heat Release Analysis of a 6 Cylinder Compression-Ignition Engine (6기통 압축착화 기관의 단일 영역 열방출량 계산)

  • 신범식;이석영;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.147-154
    • /
    • 1996
  • An one-zone heat release analysis was studied for a 6 cylinder direct injetction compressionignition engine. The heat transfer constants in this anlysis were calibrated to match the measured fuel energy at 1,000 rpm full load, which was the fuel mass multiplied by the fuel's heating value. The integrated gross heat release values were close to the measured fuel energy at various full load operating conditions. The combustion inefficiency from this calculation was proportional to the smoke of exhaust gas.

  • PDF

Analysis of Nigeria Research Reactor-1 Thermal Power Calibration Methods

  • Agbo, Sunday Arome;Ahmed, Yusuf Aminu;Ewa, Ita Okon Bassey;Jibrin, Yahaya
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.673-683
    • /
    • 2016
  • This paper analyzes the accuracy of the methods used in calibrating the thermal power of Nigeria Research Reactor-1 (NIRR-1), a low-power miniature neutron source reactor located at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria, Nigeria. The calibration was performed at three different power levels: low power (3.6 kW), half power (15 kW), and full power (30 kW). Two methods were used in the calibration, namely, slope and heat balance methods. The thermal power obtained by the heat balance method at low power, half power, and full power was $3.7{\pm}0.2kW$, $15.2{\pm}1.2kW$, and $30.7{\pm}2.5kW$, respectively. The thermal power obtained by the slope method at half power and full power was $15.8{\pm}0.7kW$ and $30.2{\pm}1.5kW$, respectively. It was observed that the slope method is more accurate with deviations of 4% and 5% for calibrations at half and full power, respectively, although the linear fit (slope method) on average temperature-rising rates during the thermal power calibration procedure at low power (3.6 kW) is not fitting. As such, the slope method of power calibration is not suitable at lower power for NIRR-1.

Application of Heat Balance Model Design of Ventilating and Cooling Greenhouse (온실의 환기 및 냉방 설계를 위한 열평형 모델의 작용)

  • 남상운
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.201-206
    • /
    • 2000
  • A certain system to overcome high temperature should be introduced for the stable year-round cultivation in greenhouses. There are efficient methods to overcome high temperature such as ventilation system with shading screen, fan and pad system with screen, and fog system with screen. This study was carried out to find a means to determine the capacity of such system. Heat balance equations for each system were established and verified by experimental results. The calculated ventilation rates from heat balance equations showed a good agreement with the measured ones. The evapotranspiration coefficient was the most important parameter affecting the ventilation requirement among input parameter affecting the ventilation requirement among input parameters except weather data. When the evaportanspiration coefficient increased 1%, the ventilation requirement decreased 1.3%. Therefore the data of evapotranspiration coefficient should be accumulated by various experiments, and then design standards and selection guidelines should be provided. The simulation results for same design conditions shown that air exchanges requirement and evaporating water of fan and pad system were 5.1∼7.7% and 6.8∼9.3% larger than those of fog system, respectively.

  • PDF

Developing a Model to Predict Road Surface Temperature using a Heat-Balance Method, Taking into Traffic Volume (교통량을 고려한 열수지법에 의한 노면온도 예측모형의 구축)

  • Son, Young-Tae;Jeon, Jin-Suk;Whang, Jun-Mun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.2
    • /
    • pp.30-38
    • /
    • 2015
  • In this study, to improve effectiveness of road management services and the safety of the road in winter, road surface temperature prediction model was developed. We have utilized the existing input data of meteorological data and additional traffic data. This Road surface temperature prediction model was utilizing a Heat-Balance Method additionally considering amount of traffic that produce heat radiation by vehicle-tire friction. This improved model was compared to the based model to check into influence of traffic affecting the road surface temperature. There were verified by comparing the real observed road surface temperature of the third Gyeong-In highway and road surface temperature from the two models. As a result, the error of real observed and the predicted value (RMSE) was found to average $1.97^{\circ}C$. Observed road surface temperature was dramatically affected by the sunlight from 6 a.m. to 2 p.m. and degree of influence decreases after that. The predictive value of the model is lower than the observed value in the afternoon, and higher at night. These results appear due to the shielding of solar radiation caused by the vehicle in the afternoon and at night, the vehicle appeared to cause thermal heat supply.

The Effect of Prepartum Diet on Nitrogen and Major Mineral Balance of Dairy Cows during Parturition in Summer

  • Kamiya, Y.;Kamiya, M.;Tanaka, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.10
    • /
    • pp.1415-1421
    • /
    • 2006
  • Proper nutritional management during the dry period is required to prevent metabolic disorders during the time of parturition and for potential increase milk yield during early lactation, especially under the heat of summer. The effect of prepartum diets on partitioning of nitrogen (N), calcium (Ca), phosphorus (P), magnesium (Mg) and potassium (K) during dry period and early lactation in summer was investigated. Nine cows were assigned to two groups and fed either control (group C: four cows) or high concentrate (group H: five cows) diets to meet 110% of their requirements before parturition. The proportion of concentrate in control diet was 35%, and that in the high concentrate diet was 45%. After parturition, all cows were fed the same diets ad libitum during lactation. Balance trials were conducted at 9, 8 and 7 days before parturition and at 12, 13 and 14 days after parturition. Before parturition, dry matter intake (DMI), DM and NFE digestibility in group C tended to be lower than those in group H. The retention of N (p<0.01) and P (p<0.05) in group C during the dry period was significantly lower than those in group H. The retention of Mg in group C during the dry period tended to be lower than in group H. The concentration of plasma NEFA in group C tended to be higher than in group H during dry period. The prepartum diet did not have an apparent effect on DMI and milk yield at 2 weeks after parturition and N, Ca, P, Mg and K balance after parturition.

Basic Design and Sensitivity Analysis of 3 MWth Chemical Looping Combustion System for LNG Combustion and Steam Generation (LNG 연소 및 스팀생산을 위한 3 MWth 급 매체순환연소 시스템의 기본설계 및 민감도 분석)

  • RYU, HO-JUNG;NAM, HYUNGSEOK;HWANG, BYUNG WOOK;KIM, HANA;WON, YOOSEOB;KIM, DAEWOOK;KIM, DONG-WON;LEE, GYU-HWA;BAEK, JEOM-IN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.374-387
    • /
    • 2021
  • Basic design of 3 MWth chemical looping combustion system for LNG combustion and steam generation was conducted based on the mass and energy balance and the previous reactivity test results of oxygen carrier particles. Process configuration including fast fluidized bed (air reactor), loop seal and bubbling fluidized bed (fuel reactor) was confirmed and their dimensions were determined by mass balance. Then, the external fluidized bed heat exchanger (FBHE) was adopted based on the energy balance to extract heat from the system. The optimum reactor design and operating condition was confirmed with sensitivity analysis by modifying system configuration based on the mass and energy balance.

Heat Fluxes in the Marine Atmospheric Surface Layer around the Korean Peninsula based on Satellite Data (위성자료를 이용한 한반도 주변 해상 대기표층의 열속)

  • HONG, Gi-Man;KWON, Byung-Hyuk;KIM, Young-Seup
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.17 no.2
    • /
    • pp.209-217
    • /
    • 2005
  • The energy balance of the surface layer of the water (the Yellow Sea, the East China Sea and the East Sea) was examined using satellite data. Variations of the net heat flux were similar to those of the latent heat flux which was more intensive than the sensible heat flux. The sensible heat flux was affected the difference between the sea surface temperature and the air temperature and was less important over the Yellow Sea. The maximum of the latent heat flux occurred in autumn when the air is drier and the wind is stronger. The shortwave radiation flux decreased with the latitude and depended on the cloudiness as the longwave radiation flux does. Annual variations of heat fluxes show that the latent heat flux was more intensive over the East China Sea than the East Sea and the Yellow Sea, while the spatial differences of the other heat fluxes were weak.

A study on the steam boiler with high compression waste heat recovery system (고압축 폐열회수장치를 구비한 증기보일러에 관한 연구)

  • HAN, Kyu-il;CHO, Dong-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.3
    • /
    • pp.302-307
    • /
    • 2017
  • An electric steam boiler equipped with a condensate recovery system, which stores the condensate generated after using steam in steam washers, steam cookers, steam irons, and steam cleaners in a condensate tank and supplies compressed air to the condensate tank so that the condensate is recovered to the boiler by the pressure of the compressed air, was studied. In the results of this study, the heat energy balance between the quantity of the heat generated by the non-metallic surface heating element and the quantity of the heat absorbed by the water was good in a range of ${\pm}5%$. In addition, the heat transfer rate increased in proportion to the electric power of the surface heating element heater, the waste heat energy was normally recovered by the recovery of the condensate of the steam boiler equipped with the high compression waste heat recovery system, and the recovery rate of the waste heat exhibited 23%.

Study on the Anthropometric and Body Composition Indices for Prediction of Cold and Heat Pattern

  • Mun, Sujeong;Park, Kihyun;Lee, Siwoo
    • The Journal of Korean Medicine
    • /
    • v.42 no.4
    • /
    • pp.185-196
    • /
    • 2021
  • Objectives: Many symptoms of cold and heat patterns are related to the thermoregulation of the body. Thus, we aimed to study the association of cold and heat patterns with anthropometry/body composition. Methods: The cold and heat patterns of 2000 individuals aged 30-55 years were evaluated using a self-administered questionnaire. Results: Among the anthropometric and body composition variables, body mass index (-0.37, 0.39) and fat mass index (-0.35, 0.38) had the highest correlation coefficients with the cold and heat pattern scores after adjustment for age and sex in the cold-heat group, while the correlation coefficients were relatively lower in the non-cold-heat group. In the cold-heat group, the most parsimonious model for the cold pattern with the variables selected by the best subset method and Lasso included sex, body mass index, waist-hip ratio, and extracellular water/total body water (adjusted R2 = 0.324), and the model for heat pattern additionally included age (adjusted R2 = 0.292). Conclusions: The variables related to obesity and water balance were the most useful for predicting cold and heat patterns. Further studies are required to improve the performance of prediction models.

Heat Transfer Model and Energy Dissipation Rate in Bubble Columns with Continuous Operation (연속조작 기포탑에서 열전달 모델 및 에너지 소멸 속도)

  • Jang, Ji Hwa;Seo, Myung Jae;Lim, Dae Ho;Kang, Yong;Jung, Heon;Lee, Ho Tae
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.587-592
    • /
    • 2009
  • Heat transfer model and energy dissipation rate were investigated to examine the heat transfer mechanism in bubble columns with continuous operation. The energy dissipation rate($E_D$) obtained from the unsteady state heat transfer model based on the surface renewal theory was significantly small, comparing with the hydrodynamic energy dissipation rate($P_v$) calculated from the overall hydrodynamic energy balance based on the behaviors and holdups of gas and liquid phases in the column. It was found from these results that the energy dissipation rate based on the surface renewal theory is independent of the hydrodynamic energy dissipation rate obtained from the overall hydrodynamic energy balance in the bubble column, in considering their mechanism. The different two energy dissipation rates were correlated in terms of operating variables within this experimental conditions, respectively.