• Title/Summary/Keyword: Heat (Mass) Transfer Coefficient

Search Result 382, Processing Time 0.027 seconds

Characteristics of Condensing Heat Transfer and Pressure Drop of HCs Refrigerants (탄화수소계 냉매의 응축 열전달 및 압력강하 특성)

  • Lee, Ho-Saeng;Lee, Kwang-Bae;Moon, Choon-Geun;Kim, Jae-Dol;Yoon, Jung-In
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1143-1148
    • /
    • 2005
  • Experimental results for heat transfer characteristic and pressure gradient of HCs refrigerants R-290, R-600a, R-1270 and HCFC refrigerant R-22 during condensing inside horizontal double pipe heat exchangers are presented. The test sections which have one tube diameter of 12.70 mm with 0.86 mm wall thickness, another tube diameter of 9.52 mm with 0.76 mm wall thickness are used for this investigation. The local condensing heat transfer coefficients of hydrocarbon refrigerants were higher than those of R-22. The average condensing heat transfer coefficient increased with the increase of the mass flux. It showed the higher values in hydrocarbon refrigerants than R-22. Hydrocarbon refrigerants have higher pressure drop than those of R-22 in 12.7 mm and 9.52 mm. This results from the investigation can be used in the design of heat transfer exchangers using hydrocarbons as the refrigerant for the air-conditioning systems.

  • PDF

Characteristics of Condensing Heat Transfer and Pressure Drop of Hydrocarbon Refrigerants (탄화수소계 냉매의 응축 열전달 및 압력강하 특성)

  • Lee Ho-Saeng;Seong Gwang-Hoon;Tong Phan Thanh;Yoon Jung-In
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.977-983
    • /
    • 2006
  • Experimental results for heat transfer characteristic and pressure gradient of hydrocarbon refrigerants (R-290, R-600a, R-1270) and HCFC refrigerant (R-22) during condensation inside horizontal double pipe heat exchangers are presented. The test sections which have one tube diameter of 12.70 mm with 0.89 mm, 9.52 mm with 0.76 mm, 6.35 mm with 0.13 mm wall thickness are used for this investigation, respectively. The local condensing heat transfer coefficients of hydrocarbon refrigerants were higher than those of R-22. The average condensing heat transfer coefficient increased with the increase of the mass flux. It showed the higher values in hydrocarbon refrigerants than R-22. Hydrocarbon refrigerants have higher pressure drop than R-22 in 10.92 mm, 8 mm and 6.1 mm inner diameters. These results from the investigation can be used in the design of heat transfer exchangers using hydrocarbons as the refrigerant for the air-conditioning systems.

A modeling of in-tube condensation heat transfer considering liquid entrainment (액적이탈을 고려한 관내 응축열전달계수 계산 모델)

  • Kwon, Jeongtae;Ahn, Yehchan;Kim, Moohwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.946-955
    • /
    • 1998
  • Local condensation heat transfer coefficients in tubes were calculated by solving momentum and energy equations for annular film with liquid entrainment. The turbulent eddy distribution across the liquid film has been proposed and the calculated heat transfer coefficients were presented. Also turbulent Prandtl number effects on condensation heat transfer were discussed from three Pr$\_$t/ models. Finally, the calculated condensation heat transfer coefficients of R22 were compared with some correlations frequency referred to in open literature. This calculation model considering liquid entrainment predicted well the in-tube condensation heat transfer coefficient of R22 than the model not considering liquid entrainment. The effect of entrainment on heat transfer was predominant for high quality and high mass flux when the liquid film was turbulent.

Prediction of flow boiling heat transfer coefficient in horizontal channels varying from conventional to small-diameter scales by genetic neural network

  • Zhang, Jing;Ma, Yichao;Wang, Mingjun;Zhang, Dalin;Qiu, Suizheng;Tian, Wenxi;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1897-1904
    • /
    • 2019
  • Three-layer back propagation network (BPN) and genetic neural network (GNN) were developed in this study to predict the flow boiling heat transfer coefficient (HTC) in conventional and small-diameter channels. The GNN has higher precision than BPN (with root mean square errors of 17.16% and 20.50%, respectively) and other correlations. The inputs include vapor quality x, mass flux G, heat flux q, diameter D and physical parameter φ, and the predicted flow boiling HTC is set as the outputs. Influences of input parameters on the flow boiling HTC are discussed based on the trained GNN: nucleate boiling promoted by a larger saturated pressure, a larger heat flux and a smaller diameter is dominant in small channels; convective boiling improved by a larger mass flux and a larger vapor quality is more significant in conventional channels. The HTC increases with pressure both in conventional and small channels. The HTC in conventional channels rises when mass flux increases but remains almost unaffected in small channels. A larger heat flux leads to the HTC growth in small channels and an increase of HTC was observed in conventional channels at a higher vapor quality. HTC increases inversely with diameter before dry out.

Flow and Heat Transfer Characteristics of $CO_2$/Oil Mixtures in a Circular Tube

  • Kang, Byung-Ha;Lim, Dong-Seop
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.4
    • /
    • pp.117-123
    • /
    • 2008
  • The present study is directed at flow and heat transfer of $CO_2$ and oil mixtures in a circular tube. PAG and POE oils are considered in this study. Flow characteristics of $CO_2$ and oil mixtures have been investigated by flow visualization. Pressure drop has been measured in the range of operating mass flow rate from 0.1 to 0.4 kg/min in a circular tube. Heat transfer characteristics of $CO_2$/oil mixtures have been investigated using a counterflow heat exchanger. In case of pure liquid $CO_2$ as well as $CO_2$ and POE mixtures, flow are seen to be uniform so that $CO_2$ and POE oil are still miscible even at flowing state. However, it is found that $CO_2$ and PAG are not miscible. Pressure drop of $CO_2$/PAG mixtures are much higher than that of $CO_2$/POE mixtures as well as pure $CO_2$ at a fixed mass flow rate. As the concentration of POE oil is increased from 0 to 5 wt%, pressure drop is increased. However, heat transfer rate and heat transfer coefficient of $CO_2$/POE mixtures are much higher than that of $CO_2$/PAG mixtures. The f-factor correlation and Nusselt number correlation for $CO_2$/POE oil mixtures are suggested in this paper.

Study on the cooling performance of discrete heat sources using coolants (냉각제들에 따른 불연속 발열체의 냉각성능 연구)

  • 최민구;조금남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.224-235
    • /
    • 1999
  • The present study investigated the effects of the experimental parameters on the cooling characteristics of the multichip module cooled by the indirect liquid cooling method using water, PF-5060, and paraffin slurry. The experimental parameters were coolants including Paraffin slurry with mass fraction of 2.5~7.5%, heat flux of 10~40W/$\textrm{cm}^2$ for the simulated VLSI chips and Reynolds numbers of 3,000~20,000. The size of paraffin slurry was constant as 10~40${\mu}{\textrm}{m}$ before and after the experiment. The chip surface temperatures for paraffin slurry were lower than those for water and PF-5060. The local heat transfer coefficients for the paraffin slurry were larger than those for water and the local heat transfer coefficients reached a row-number-independent and thermally-fully-developed value approximately after the third row. The local Nusselt numbers for paraffin slurry with a mass fraction of 7.5% were larger by 20~38% than those for water. The paraffin slurry with a mass fraction of 5% shelved the best thermal and hydrodynamic characteristics when local heat transfer and pressure drop were considered simultaneously.

  • PDF

Effect of refrigeration lubricants on the heat transfer performance in the microfin tube evaporator (마이크로핀관 증발기내 전열 성능에 미치는 냉동기유의 영향)

  • Cho, Keumnam;Tae, S.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.61-72
    • /
    • 1999
  • The present study experimentally investigated the effect of refrigeration lubricant on the heat transfer performance in the straight sections and U-bend of a microfin tube evaporator by using R-22/mineral oil and R-407C/POE oil. The apparatus consisted of test section with U-bend, preheater, condenser, oil injection and sampling devices, magnetic pump, mass flow meter etc. The experimental parameters were oil concentration of 0 to 5 wt%, inlet quality of 0.1 to 0.5, mass flux of 219 and $400kg/m^2s$ and heat flux of 10 and $20kW/m^2$. The effects of parameters on the heat transfer coefficients were large in the order of inlet quality, mass flux and heat flux as oil concentration got increased. As oil concentration was increased, heat transfer coefficients were continuously decreased for R-22 and increased by 3% up to the concentration of 1% and then decreased for R-407C under the condition of large inlet quality, and small mass flux and heat flux. But, the heat transfer coefficients were increased up to the concentration of 3% and then decreased for both R-22 and R-407C refrigerants under the opposite conditions. The variation of enhancement factors for R-407C was under 50% of that for R-22 and the variation with respect to the positions in the test section was small. The pressure drops were increased for both R-22 and R-407C refrigerants as oil concentration was increased. The pressure drops for R-407C were smaller by the maximum of 18% than those for R-22.

  • PDF

A Study on the Development of Adsorption-Desorption Systems Using Thermoelectric Devices for Improved Energy Efficiency (에너지 효율 향상을 위한 열전소자를 이용한 흡·탈착 시스템 개발 연구)

  • Jik-Su Yu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.4_2
    • /
    • pp.981-989
    • /
    • 2024
  • In recent years, there has been a growing focus on preserving the global environment and utilizing resources efficiently. The significance of energy conservation has led to the development of systems that recycle waste heat from factories and use eco-friendly refrigerants. This study aims to enhance the performance of adsorption-desorption systems using thermoelectric devices, which are known for their ability to convert temperature differences into electrical energy. The research focuses on improving the efficiency of these systems by integrating thermoelectric modules to cool the adsorption side and heat the desorption side, thus enhancing overall system performance. The experiments utilized a typical thermoelectric device and silica gel as the adsorbent. Key experimental parameters included varying the inlet air temperature and relative humidity on the desorption side. The results indicated that increasing the relative humidity of the inlet air on the desorption side significantly enhanced the overall mass transfer coefficient while reducing the completion time of the process. Similarly, higher inlet air temperatures led to an increase in the mass transfer coefficient and a decrease in process completion time. These findings suggest that optimizing the operational conditions of thermoelectric devices can substantially improve the performance of adsorption-desorption systems, offering potential benefits for applications in ventilation systems and other related fields.

Study on R-l34a, R-407C, and R-410A Condensation Performance in the Oblong Shell and Plate Heat Exchanger (오블롱 셀 플레이트 열교환기에서의 R-l34a, R-407C, R-410A의 응축성능에 관한 실험적 연구)

  • Park, Jae-Hong;Kim, Young-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1535-1548
    • /
    • 2004
  • Condensation heat transfer experiments were conducted with the oblong shell and plate heat exchanger without oil in a refrigerant loop using R-l34a, R-407C and R-410A. An experimental refrigerant loop has been developed to measure the condensation heat transfer coefficient h$_{r}$ and frictional pressure drop $\Delta$p$_{f}$ of the various refrigerants in a vertical oblong shell and plate heat exchanger. The effects of the refrigerant mass flux(40∼80kg/$m^2$s), average heat flux(4∼8kW/$m^2$), refrigerant saturation temperature(30∼4$0^{\circ}C$) and vapor quality of refrigerants on the measured data were explored in detail. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the oblong shell and plate heat exchanger remains turbulent. A comparison of the performance of the various refrigerants revealed that R-410A had the highest heat transfer performance followed by R-l34a, and R-407C had the lowest performance of the refrigerants tested. The pressure drops were also reported in this paper. The pressure drops for R-410A were approximately 45% lower than those of R-l34a. R-407C had 30% lower pressure drops than R-l34a. Experimental results were compared with several correlations which predicted condensation heat transfer coefficients and frictional pressure drops. Comparison with the experimental data showed that the previously proposed correlations gave unsatisfactory results. Based on the present data, empirical correlations of the condensation heat transfer coefficient and the friction factor were proposed.tor were proposed.sed.

An Experimental Study on Evaporative Heat Transfer Characteristics in a Small Diameter Tube (미소직경관 내 증발열전달 특성에 관한 실험적 연구)

  • Hwang, Yun-Uk;Kim, Min-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.216-224
    • /
    • 2001
  • Experiments have been performed to investigate evaporative heat transfer characteristics of R-134a flowing in a small diameter tube. Test section was made of stainless steel tube with an inner diameter of 2.2mm and was uniformly heated by electric current which was applied to the tube wall. The local saturation temperature of refrigerant flowing in a tube is calculated from the measured local saturation pressure by using an equation of state. Inner wall temperature was calculated from measured outer wall temperature, accounting for heat generation in the tube and one dimensional heat conduction through the tube wall. Mass quality of refrigerant flowing in a tube was calculated by considering energy balance in the pre-heater and the test section. Heat flux was varied from 19 to 64kW/$m^2$, and mass flux was chanted from 380 to 570kg/$m^2$s for each heat flux condition. From this study, heat transfer in a small diameter tube is affected by heat flux as well as mass flux for a wide range of mass quality. Heat transfer coefficient in a small diameter tube is much greater than that in medium sized tubes. Test results in this study are compared with Gungor and Winterton correlation, which gives an absolute average deviation of 27%.