• Title/Summary/Keyword: Heat & Cooling Energy

Search Result 1,283, Processing Time 0.029 seconds

Study on Performance Prediction and Energy Saving of Indirect Evaporative Cooling System (간접식 증발냉각장치의 성능예측과 에너지절약에 관한 연구)

  • Yoo, Seong Yeon;Kim, Tae Ho;Kim, Myung Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.743-749
    • /
    • 2015
  • The purpose of this study is to predict the performance of an indirect evaporative cooling system, and to evaluate its energy saving effect when applied to the exhaust heat recovery system of an air-handling unit. We derive the performance correlation of the indirect evaporative cooling system using a plastic heat exchanger based on experimental data obtained in various conditions. We predict the variations in the performance of the system for various return and outdoor air conditioning systems using the obtained correlation. We also analyze the energy saving of the system realized by the exhaust heat recovery using the typical meteorological data for several cities in Korea. The average utilization rate of the sensible cooling system for the exhaust heat recovery is 44.3% during summer, while that of the evaporative cooling system is 96.7%. The energy saving of the evaporative cooling system is much higher compared to the sensible cooling system, and was about 3.89 times the value obtained in Seoul.

Application of District Cooling System for Deep Ocean Water by Case Study (사례 분석을 통한 해양심층수의 지역냉방시스템 적용 방안)

  • Jin, Su-Hwuy;Park, Jin-Young;Kim, Sam-Uel;Kim, Hyeon-Ju
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.179-184
    • /
    • 2011
  • The development of new energy has attracted consideration attention due to the high oil price and environmental problems. In advanced country, they have tried to carry out a long range plan for energy. We need to develop new energy for Low Carbon Green Growth in Korea. The building is 30% among ratio of energy consumption in Korea. And in the past, heating energy was high ratio for energy using at home. But recently, the demand for cooling energy keeps growing due to rising average temperature on the earth and improvement of life quality. In this situation, the energy of lake water and ocean water has studied to utilize in advanced country because of low temperature at underwater. But the study for deep water is still a lot left to do. In this study, we analyzed district cooling system and the present condition. Analyzing the deep lake water cooling system in Toronto, we found an application of district cooling system using deep ocean water. Deep lake water uses heat source for district cooling and water source for city in Toronto. So reducing the initial cost, this city had economic effect. When DLWC was applied at existing building, the heat exchanger was installed instead of cooling tower and refrigerator. And the heat exchanger used to connect main pipe with cool water on city. System using deep ocean water can be applied as a similar way to supply cool water from lake to building.

  • PDF

A Study on the Improvement of Efficiency of Heat Transfer of Double Pipe Heat Exchanger with Helical Insert Device on Cooling of a Fuel Cell (연료전지 냉각용 헬리컬 인서트디바이스 이중관열교환기의 열전달 성능 향상에 관한 연구)

  • CHO, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.6
    • /
    • pp.1872-1879
    • /
    • 2015
  • The present study was conducted on the improvement of the heat transfer performance of double pipe heat exchangers with helical insert device. Double pipe heat exchangers with helical insert device were studied for improvement of the heat transfer performance of double pipe heat exchangers with helical insert device and plain double pipe heat exchangers were also studied to comparatively analyze heat transfer performance. Experimental results were derived on changes in the Reynold's numbers of the cooling water flowing in helical and plain double pipe heat exchangers and changes in the heat flux of the air. Thereafter, to verify the reliability of the experimental results, the theoretical total energy and the experimental total energy were comparatively analyzed and the following results were derived. The thermal energy of the calorie lost by the hot air and that of the calorie obtained by the cooling water were well balanced. The experiments of plain double pipe heat exchangers and double pipe heat exchangers with helical insert device were conducted under normal conditions and the theoretical overall heat transfer coefficient value and the experimental overall heat transfer coefficient value coincided well with each other. In both plain double pipe heat exchangers and double pipe heat exchangers with helical insert device, heat transfer rates increased as the cooling water flow velocity increased. Under the same experimental conditions, the heat transfer performance of double pipe heat exchangers with helical insert device was shown to be higher by approximately 1.5 times than that of plain double pipe heat exchangers.

Numerical Investigation on the Thermal Performance of a Cooling Device for a CPV Module (고집광 태양광 모듈용 냉각 장치의 열성능에 대한 수치 해석적 연구)

  • Do, Kyu Hyung;Kim, Taehoon;Han, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • In the present study, the effects of the heat spreader thickness and the heat sink size on the thermal performance of a cooling device for a concentrating photovoltaic (CPV) module were numerically investigated. Numerical simulation was conducted by using the simulation tool ICEPAK, commercial software based on the finite volume method. Numerical results were validated by comparing the existing experimental data. The thermal performance of a cooling device, which consisted of a heat spreader and a natural convective heat sink, was evaluated with varying the heat spreader thickness and the heat sink size. The geometric configuration of the natural convective heat sink, such as the fin height, the fin spacing, and the fin thickness, was optimized by using the existing correlation. The numerical results showed that the thermal performance of the cooling device increased as the heat spreader thickness or the heat sink size increased. Also, it was found that the spreading thermal resistance plays an important role in the thermal performance of the cooling device which has the localized heat source.

Performance Characteristics of the Desiccant Cooling System in Various Outdoor and Load Conditions (외기조건에 따른 제습냉방시스템의 성능 특성)

  • Lee, Dae-Young;Chang, Young-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.623-628
    • /
    • 2009
  • Desiccant based air conditioning system offers a promising alternative to conventional one using vapour compression refrigeration for energy saving and greenhouse gas reduction. It is a heat driven cycle which has high potential for the use of low grade heat source such as the waste heat from the cogeneration plant or the solar thermal energy. In this study, the cooling performance of a desiccant cooling system incorporating a regenerative evaporative cooler was characterized in various operation conditions through numerical simulation. The cooling capacity and COP were evaluated at various outdoor conditions, regeneration temperatures, and supply flow rates. Based on the performance characteristics, the optimal control scheme was discussed to minimize the cooling cost at part load condition.

  • PDF

Absorption cooling R&D in Europe

  • Kuhn, A.;Petersen, S.;Riebow, D.;Sahin, D.;Ziegler, F.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.33 no.3
    • /
    • pp.50-57
    • /
    • 2004
  • This article reviews absorption cooling R&D in Europe from the viewpoint of fundamentals, cycle development and applications. The review contains information on R&D, predominantly of public projects in the field of sorption cooling. We report on research which is performed in Europe with some stress on Germany. There is progress in fundamentals, thermodynamic cycle design, and also applications. In the fundamentals part the discussion about thermodynamics, working pairs, and heat and mass transfer is reflected. Today's discussion on thermodynamic cycles is not very strong. Main focus is on special solid sorption cycles, compression­sorption hybrids, and open cycles, In the applications part the chilling business is the main issue. Some interest is given to the improvement of efficiency on and the adaptation to low temperature waste heat use, but the stress is on the use of solar energy as heat source. The area of heat pumping for heating purposes is less prominent but not at all negligible. Finally, industrial heat pumping involves the reverse cycle (heat transformer, heat pump type Ⅱ) also, but there is no significant activity.

  • PDF

Energy Saving Effect of CCHP System Using High Temperature Polymer Electrolyte Fuel Cell for Data Centers (고온 고분자 연료전지를 이용한 데이터 센터용 CCHP 시스템의 에너지 절감 효과)

  • SEONGHYEON HAM;TAESEONG KANG;WON-YONG LEE;MINJIN KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.2
    • /
    • pp.187-195
    • /
    • 2023
  • Data centers not only consume significant electricity to operate IT equipment, but also use a lot of electricity to cool the heat generated by IT equipment. The waste heat of a high-temperature polymer electrolyte fuel cell (HT-PEFC) is capable of producing cooling , so it can be effectively applied to data centers that require cooling throughout the year. The energy-saving effects of the proposed combined cooling, heat and power (CCHP) system using HT-PEFC. That was analyzed based on the annual energy consumption data of a specific data center. When the system was running at 100% of the year, It was shown that the installation of 1 MW of the proposed system can save 3,407 MWh of electrical energy per year. In addition, compared to the existing system, the annual power usage effectiveness can be improved from 2.0 to 1.57 and 6,293 MWh of extra heat energy per year can be produced to sell. Furthermore, sensitivity analysis was performed on the fuel cell operating temperature and current density to guide the appropriate installation capacity of the proposed system.

Analysis on the Performance Evaluation Trends of Heat Pumps and the Test Standards of a Geothermal Heat Pump in Korea (히트펌프 성능 평가 동향과 국내 지열원 히트펌프 성능 평가 규격 및 제도 분석)

  • Kang, Shin-Hyung;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.4
    • /
    • pp.31-38
    • /
    • 2017
  • The heating and cooling air conditioning field has been increasing the problems of energy consumption and global warming in the world. A geothermal heat pump has been known as one of the highest efficient heating and cooling system. In this study, the analysis about the test standards of the geothermal heat pump of the Republic of Korea was executed. From the research, the following results were given. It is needed to address the domestic test standard for direct heat exchange geothermal heat pump. Water to air multi geothermal heat pump test standard was only developed in Korea. The test standard to calculate a seasonal energy efficiency ratio for cooling period and heat seasonal performance factor for heating period should be newly developed to estimate actual annual energy consumption and $CO_2$ emission.

An Experimental Study on the Cooling Tower of Plume Prevention and Performance Improvements (냉각탑 백연방지의 성능 향상에 관한 실험적 연구)

  • JEONG, SOON YOUNG;LEE, BYEONG CHEON;KIM, SUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.578-584
    • /
    • 2019
  • The occurrence of white plume in the cooling tower is phenomenon that the steam in the air through the cooling tower fan is condensed again by the cold ambient air to become saturated moist air. Accordingly, this can cause many problems like spoiling landscape around the cooling tower, odor of ambient air, falling accident by frozenness in the winter, and traffic accident, etc. This study was to install the heat exchanger in the inside of the cooling tower in order to prevent the white plume phenomenon in the cooling tower without affecting the performance of cooling tower. In addition, this study was to discharge the part of cooling water into the atmosphere through the recirculation of heat exchanger after creating dry air by heating the saturated moist air to the dew point temperature. At that time, this study was to conduct the experimental study in order to secure the optimal design data to prevent the white plume in the cooling tower because it checked the dry·moist temperature and relative humidity in the inside·outside of cooling tower on the moist air, and evaluated the performance of the heat exchanger.

Investigation of Condensation Heat Transfer Correlation of Heat Exchanger Design in Secondary Passive Cooling System (이차피동냉각시스템의 열교환기 설계를 위한 응축열전달 상관식 연구)

  • Ju, Yun Jae;Kang, Han-Ok;Lee, Tae-Ho;Park, Cheon-Tae;Lee, Hee Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1069-1078
    • /
    • 2013
  • Recently, condensation heat exchangers have been studied for applications to the passive cooling systems of nuclear plants. To design vertical-type condensation heat exchangers in secondary passive cooling systems, TSCON (Thermal Sizing of CONdenser), a thermal sizing program for a condensation heat exchanger, was developed at KAERI (Korea Atomic Energy Research Institute). In this study, the existing condensation heat transfer correlation of TSCON was evaluated using 1,157 collected experimental data points from the heat exchanger of a secondary passive cooling system for the case of pure steam condensation. The investigation showed that the Shah correlation, published in 2009, provided the most satisfactory results for the heat transfer coefficient with a mean absolute error of 34.8%. It is suggested that the Shah correlation is appropriate for designing a condensation heat exchanger in TSCON.