• Title/Summary/Keyword: Heat/Mass Transfer

Search Result 1,290, Processing Time 0.029 seconds

Boiling Heat Transfer of Ammonia inside Horizontal Smooth Small Tube (수평미세관내 NH3 비등열전달 특성)

  • Choi, Kwang-Il;Oh, Jong-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.2
    • /
    • pp.101-108
    • /
    • 2013
  • This paper is presented an experimental study of flow boiling heat transfer characteristics of ammonia, and is focused on pressure gradient and heat transfer coefficient of the refrigerant flow inside horizontal small tube with inner diameter of 3.0 mm and length of 2000 mm. The direct heating method is applied for supplying heat to the refrigerant, where the test tube is uniformly heated by electric current. The local heat transfer coefficients were obtained over a heat flux range of 20 to $80kW/m^2$, a mass flux range of 50 to $500kg/m^2s$, a saturation temperature range of 0 to $10^{\circ}C$, and quality up to 1.0. The pressure drops increase with increasing mass flux and heat flux, and with decreasing saturation temperature. The heat transfer coefficients increase with increasing mass flux and saturation temperature in middle and high quality region. And the local heat transfer coefficient increase with increasing heat flux in low quality region. The heat transfer coefficient of the experimental result was compared with six existing heat transfer coefficient correlation. A new boiling heat transfer coefficient correlation based on the superposition model for ammonia in small tubes is developed average deviation of -0.17% and mean deviation of 10.85%.

Correlation of Convective Boiling Heat Transfer in a Horizontal Tube for Pure Refrigerants and Refrigerant Mixtures (순수 및 혼합냉매의 유동증발 열전달 상관식)

  • Shin, J.Y.;Kim, M.S.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.254-266
    • /
    • 1996
  • Boiling heat transfer coefficients of pure refrigerants(R22, R32, R125, R134a, R290, and R600a) and refrigerant mixtures(R32/R134a and R290/R600a) are measured experimentally and compared with several correlations. Convective boiling term of Chen's correlation predicts experimental data for pure refrigerants fairly well(root-mean-square error of 12.1% for the quality range over 0.2). An analysis of convective boiling heat transfer of refrigerant mixtures is performed for an annular flow to study degradation of heat transfer. Annular flow is the subject of this analysis because a great portion of the evaporator in refrigeration or air conditioning system is known to be in the annular flow regime. Mass transfer effect due to composition difference between liquid and vapor phases, which is considered as a driving force for mass transfer at interface, is included in this analysis. Correction factor $C_F$ is introduced to the correlation for the pure substances through annular flow analysis to apply the correlation to the mixtures. The flow boiling heat transfer coefficients are calculated using the correlation considering nucleate boilling effect in the low quality region and mass transfer effect for nonzazeotropic refrigerant mixtures.

  • PDF

The Study on Absorption Performance of a Plate-Fin Type Absorber (플레이트-휜형 흡수기의 흡수성능에 대한 연구)

  • 강인석;김남진;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.557-563
    • /
    • 2001
  • Small capacity gas absorption systems for cooling and heating have been favorably considered to reduce the seasonal imbalance of electrical loads and LNG consumption recently. A multifunctional plate-fin heat exchanger was adopted as an absorber and the performance was tested and analyzed to reduce the size and weight of the absorption heat pump. The test was performed using breadboard type ammonia absorption machine. The performance was compared with the plate type absorber and there was little difference in heat and mass transfer characteristics. The heat and mass transfer performance was a function of poor solution and vapor flow rates and the mass transfer was dependent on vapor flow rate more than heat transfer.

  • PDF

Numerical Study of Characteristic of Heat and Mass Transfer in Planar Membrane Humidifier According to Flow Direction (연료전지용 판형 막 가습기의 유동방향에 따른 열 및 물질전달 특성에 관한 해석적 연구)

  • Yun, Sungho;Byun, Jae Ki;Choi, Young Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.503-511
    • /
    • 2013
  • The humidifying supply gas is important in terms of the performance efficiency and membrane life improvement of a PEM fuel cell. A planar membrane humidifier is classified as a cross-flow and counter-flow type depending on the flow direction, and heat and mass transfer occur between the plate and the membrane. In this study, the changes in heat and mass transfer for various inlet temperatures and flow rates are compared according to the flow direction by using the sensible and latent ${\varepsilon}$-NTU method. The obtained results indicate that the counter flow shows higher heat and mass transfer performance than the cross flow at a low flow rate, and the difference in performance decreases as the flow rate increases. Furthermore, changes in the mass transfer performance decrease considerably with a nonlinear increase in the inlet temperature, and variations of the heat transfer performance are small.

A Study of Frost Formation and Heat Transfer on a Cylinder in a Cross-Flow (주유동중에 놓인 원관 외부에서의 발생하는 착상 및 열전달에 관한 연구)

  • Lee, D.G.;Choi, M.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.537-549
    • /
    • 1996
  • A numerical study of heat and mass transfer has been carried out for a frost formation process on a circular cylinder in a cross flow including the effect of buoyancy. Studies include cases of low and high Reynolds number flows. The effect of normal velocity at the surface which is produced due to mass transfer was included in the analysis as well as heat transfer contribution generated due to mass transfer. Variations of heat transfer and frost growth both in time and in the circumferential direction have been obtained for various buoyancy parameters. The effect of flow directions(identical or opposite directions to the gravity) has been studied to yield different frost growth. Our results have been compared with existing experimental data and are in good agreement. Buoyancy analyses for a high Reynolds number flow agree with full numerical solutions for the case of having the same flow direction as gravity. However, for the opposite direction case, the boundary layer analyses would not be applicable to predict frost growth except the region near the stagnation point.

  • PDF

Numerical and statistical analysis of Newtonian/non-Newtonian traits of MoS2-C2H6O2 nanofluids with variable fluid properties

  • Manoj C Kumar;Jasmine A Benazir
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.341-352
    • /
    • 2024
  • This study investigates the heat and mass transfer characteristics of a MoS2 nanoparticle suspension in ethylene glycol over a porous stretching sheet. MoS2 nanoparticles are known for their exceptional thermal and chemical stability which makes it convenient for enhancing the energy and mass transport properties of base fluids. Ethylene glycol, a common coolant in various industrial applications is utilized as the suspending medium due to its superior heat transfer properties. The effects of variable thermal conductivity, variable mass diffusivity, thermal radiation and thermophoresis which are crucial parameters in affecting the transport phenomena of nanofluids are taken into consideration. The governing partial differential equations representing the conservation of momentum, energy, and concentration are reduced to a set of nonlinear ordinary differential equations using appropriate similarity transformations. R software and MATLAB-bvp5c are used to compute the solutions. The impact of key parameters, including the nanoparticle volume fraction, magnetic field, Prandtl number, and thermophoresis parameter on the flow, heat and mass transfer rates is systematically examined. The study reveals that the presence of MoS2 nanoparticles curbs the friction between the fluid and the solid boundary. Moreover, the variable thermal conductivity controls the rate of heat transfer and variable mass diffusivity regulates the rate of mass transfer. The numerical and statistical results computed are mutually justified via tables. The results obtained from this investigation provide valuable insights into the design and optimization of systems involving nanofluid-based heat and mass transfer processes, such as solar collectors, chemical reactors, and heat exchangers. Furthermore, the findings contribute to a deeper understanding of stretching sheet systems, such as in manufacturing processes involving continuous casting or polymer film production. The incorporation of MoS2-C2H6O2 nanofluids can potentially optimize temperature distribution and fluid dynamics.

Prediction of Forced Convective Boiling Heat Transfer Coefficient of Pure Refrigerants and Binary Refrigerant Mixtures Inside a Horizontal Tube

  • Kim, Min-Soo;Hong, Eul-Cheong;Shin, Jee-Young;Kyungdoug Min;Ro, Sung-Tack
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.935-944
    • /
    • 2003
  • Forced convective boiling heat transfer coefficients were predicted for an annular flow inside a horizontal tube for pure refrigerants and nonazeotropic binary refrigerant mixtures. The heat transfer coefficients were calculated based on the turbulent temperature profile in liquid film and vapor core considering the composition difference in vapor and liquid phases, and the nonlinearity in mixing rules for the calculation of mixture properties. The heat transfer coefficients of pure refrigerants were estimated within a standard deviation of 14% compared with available experimental data. For nonazeotropic binary refrigerant mixtures, prediction of the heat transfer coefficients was made with a standard deviation of 18%. The heat transfer coefficients of refrigerant mixtures were lower than linearly interpolated values calculated from the heat transfer coefficients of pure refrigerants. This degradation was represented by several factors such as the difference between the liquid and the overall compositions, the conductivity ratio and the viscosity ratio of both components in refrigerant mixtures. The temperature change due to the concentration gradient was a major factor for the heat transfer degradation and the mass flux itself at the interface had a minor effect.

Effects of Flow Resonance on Heat Transfer Enhancement and Pressure Drop in a Plate Heat Exchanger (유동공진이 판형 열교환기의 열전달 향상과 압력강하에 미치는 영향)

  • Han Sang Kyu;Kang Byung Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.165-172
    • /
    • 2005
  • Heat transfer enhancement of three types of brazed plate heat exchangers has been evaluated experimentally. The effects of flow resonance in a plate heat exchanger on the heat transfer rate and pressure drop have been investigated in a wide range of mass flow rates in detail. The problem is of particular interest in the innovative design of a plate heat exchanger by flow resonance. The results obtained indicate that both heat transfer coefficient and pressure drop are increased as mass flow rate is increased, as expected. It is also found that the heat transfer enhancement is increased with an increase in the plate pitch, while the heat transfer is decreased with a decrease in the chevron angle. Pressure drop also increased with an increase in the plate pitch and with a decrease in the chevron angle. Heat transfer enhancement in the plate heat exchangers is maximized by flow resonance and the resonance frequency of the present plate heat exchangers is found to be in the range of $10~15\;Hz$.

Boiling Heat Transfer Characteristics of R-290 in Horizontal Smooth Minichannel (수평미세관내 R-290의 비등열전달 특성)

  • Choi, Kwang-Il;Pamitran, A.S.;Oh, Jong-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.906-914
    • /
    • 2006
  • The present paper dealt with an experimental study of boiling heat transfer characteristics of R-290. Pressure gradient and heat transfer coefficient of the refrigerant flow inside horizontal smooth minichannel were obtained with inner tube diameter of 3.0 mm and length of 2,000 mm. The direct electric heating method was applied for supplying a heat to the refrigerant uniformly. The experiments were conducted with R-290 purity of 99.99%, at saturation temperature of 0 to $10^{\circ}C$, a mass flux range of $50{\sim}250kg/m^2s$, and a heat flux range of $5{\sim}20kW/m^2$. The heat transfer coefficients of R-290 increased with increasing mass flux and saturation temperature, wherein the effect of mass flux was higher than that of the saturation temperature. Heat flux has a low effect on the increasing of heat transfer coefficient. The heat transfer coefficient was compared with six existing heat transfer coefficient correlations. The Zhang et al.'s correlation (2004) gave the best prediction of heat transfer coefficient. A new correlation to predict the two-phase flow heat transfer coefficient was developed based on the Chen correlation. The new correlation predicted the experimental data well with a mean deviation of 11.78% and average deviation of -0.07%.

A study on condensation heat transfer performance in microchannel tube (마이크로 채널 관에서의 응축 열전달 성능에 관한 연구)

  • Lee, Jeong-Kun
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.22-29
    • /
    • 2019
  • This study conducted a research as to condensation heat transfer by using three types of flat micro multi-channel tubes with different processing of micro-fin and number of channels inside the pipes and different sizes of appearances. In addition, identical studies were conducted by using smoothing circular tubes with 5mm external diameter to study heat transfer coefficient. The condensation heat transfer coefficient showed an increase as the vapor quality and mass flux increased. However, each tube shows little differences compared to 400kg/m2s or identical in case the mass flux are 200kg/m2s and 100kg/m2s. The major reason for these factors is increase-decrease of heat transfer area that the flux type of refrigerant is exposed to the coolant's vapor with the effect of channel aspect ratio or micro-fin. In addition, the heat transfer coefficient was unrelated to the heat flux, and shows a rise as the saturation temperature gets lower, an effect that occurs from enhanced density. The physical factor of heat transfer coefficient increased as the channel's aspect ratio decreased. Additionally, the micro pin at the multi-channel type tube is decided as a disadvantageous factor to condensation heat enhancement factor. That is, due to the effect of aspect ratio or micro-fin, the increase-decrease of heat transfer area that the flux type of a refrigerant is exposed to the vapor is an important factor.