• Title/Summary/Keyword: Heartbeat Classification

Search Result 11, Processing Time 0.023 seconds

Rhythm Classification of ECG Signal by Rule and SVM Based Algorithm (규칙 및 SVM 기반 알고리즘에 의한 심전도 신호의 리듬 분류)

  • Kim, Sung-Oan;Kim, Dae-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.9
    • /
    • pp.43-51
    • /
    • 2013
  • Classification result by comprehensive analysis of rhythm section and heartbeat unit makes a reliable diagnosis of heart disease possible. In this paper, based on feature-points of ECG signals, rhythm analysis for constant section and heartbeat unit is conducted using rule-based classification and SVM-based classification respectively. Rhythm types are classified using a rule base deduced from clinical materials for features of rhythm section in rule-based classification, and monotonic rhythm or major abnormality heartbeats are classified using multiple SVMs trained previously for features of heartbeat unit in SVM-based classification. Experimental results for the MIT-BIH arrhythmia database show classification ratios of 68.52% by rule-based method alone and 87.04% by fusion method of rule-based and SVM-based for 11 rhythm types. The proposed fusion method is improved by about 19% through misclassification improvement for monotonic and arrangement rhythms by SVM-based method.

A Search for Analogous Patients by Abstracting the Results of Arrhythmia Classification (부정맥 분류 결과의 축약에 기반한 유사환자 검색기)

  • Park, Juyoung;Kang, Kyungtae
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.7
    • /
    • pp.464-469
    • /
    • 2015
  • Long-term electrocardiogram data can be acquired by linking a Holter monitor to a mobile phone. However, most systems are designed to detect arrhythmia through heartbeat classification, and not just for supporting clinical decisions. In this paper, we propose an Abstracting algorithm, and introduce an analogous pateint search system using this algorithm. An analogous patient searcher summarizes each patient's typical pattern using the results of heartbeat, which can greatly simplify clinical activity. It helps to find patients with similar arrhythmia patterns, which can help in contributing to diagnostic clues. We have simulated these processes on data from the MIT-BIH arrhythmia database. As a result, the Abstracting algorithm provided a typical pattern to assist in reaching rapid clinical decisions for 64% of the patients. On an average, typical patterns and results generated by the abstracting algorithm summarized the results of heartbeat classification by 98.01%.

Adaptive Detection of Unusual Heartbeat According to R-wave Distortion on ECG Signal (심전도 신호에서 R파 왜곡에 따른 적응적 특이심박 검출)

  • Lee, SeungMin;Ryu, ChunHa;Park, Kil-Houm
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.200-207
    • /
    • 2014
  • Arrhythmia electrocardiogram signal contains a specific unusual heartbeat with abnormal morphology. Because unusual heartbeat is useful for diagnosis and classification of various diseases, such as arrhythmia, detection of unusual heartbeat from the arrhythmic ECG signal is very important. Amplitude and kurtosis at R-peak point and RR interval are characteristics of ECG signal on R-wave. In this paper, we provide a method for detecting unusual heartbeat based on these. Through the value of the attribute deviates more from the average value if unusual heartbeat is more certainly, the proposed method detects unusual heartbeat in order using the mean and standard deviation. From 15 ECG signals of MIT-BIH arrhythmia database which has R-wave distortion, we compare the result of conventional method which uses the fixed threshold value and the result of proposed method. Throughout the experiment, the sensitivity is significantly increased to 97% from 50% using the proposed method.

Classification of cardiotocograms using random forest classifier and selection of important features from cardiotocogram signal

  • Arif, Muhammad
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.3
    • /
    • pp.173-183
    • /
    • 2015
  • In obstetrics, cardiotocography is a procedure to record the fetal heartbeat and the uterine contractions usually during the last trimester of pregnancy. It helps to monitor patterns associated with the fetal activity and to detect the pathologies. In this paper, random forest classifier is used to classify normal, suspicious and pathological patterns based on the features extracted from the cardiotocograms. The results showed that random forest classifier can detect these classes successfully with overall classification accuracy of 93.6%. Moreover, important features are identified to reduce the feature space. It is found that using seven important features, similar classification accuracy can be achieved by random forest classifier (93.3%).

Arrhythmia Detection Using Rhythm Features of ECG Signal (심전도 신호의 리듬 특징을 이용한 부정맥 검출)

  • Kim, Sung-Oan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.8
    • /
    • pp.131-139
    • /
    • 2013
  • In this paper, we look into previous research in relation to each processing step for ECG diagnosis and propose detection and classification method of arrhythmia using rhythm features of ECG signal. Rhythm features for distribution of rhythm and heartbeat such as identity, regularity, etc. are extracted in feature extraction, and rhythm type is classified using rule-base constructed in advance for features of rhythm section in rhythm classification. Experimental results for all of rhythm types in the MIT-BIH arrhythmia database show detection performance of 100% for arrhythmia with only normal rhythm rule and applicability of classification for rhythm types with arrhythmia rhythm rules.

Detection of Abnormal Heartbeat using Hierarchical Qassification in ECG (계층구조적 분류모델을 이용한 심전도에서의 비정상 비트 검출)

  • Lee, Do-Hoon;Cho, Baek-Hwan;Park, Kwan-Soo;Song, Soo-Hwa;Lee, Jong-Shill;Chee, Young-Joon;Kim, In-Young;Kim, Sun-Il
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.6
    • /
    • pp.466-476
    • /
    • 2008
  • The more people use ambulatory electrocardiogram(ECG) for arrhythmia detection, the more researchers report the automatic classification algorithms. Most of the previous studies don't consider the un-balanced data distribution. Even in patients, there are much more normal beats than abnormal beats among the data from 24 hours. To solve this problem, the hierarchical classification using 21 features was adopted for arrhythmia abnormal beat detection. The features include R-R intervals and data to describe the morphology of the wave. To validate the algorithm, 44 non-pacemaker recordings from physionet were used. The hierarchical classification model with 2 stages on domain knowledge was constructed. Using our suggested method, we could improve the performance in abnormal beat classification from the conventional multi-class classification method. In conclusion, the domain knowledge based hierarchical classification is useful to the ECG beat classification with unbalanced data distribution.

Energy Expenditure of Male Blue Collar Workers (생산직 남성근로자의 작업 중 에너지 소모량)

  • Woo, Ji Hoon;Kang, Dongmug;Shin, Yong Chul;Kim, Myeong Ock;Son, Min Jung;Kim, Boo Wook;Cho, Byung Mann;Lee, Su Ill
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.2
    • /
    • pp.183-192
    • /
    • 2006
  • Predicting energy expenditure (EE) is important to prevent work-related musculoskeletal disorders (WMSDs). The problem to predict EE is that the standard of EE is based on western data. The authors checked average EE by job categories to provide basic data for suggesting proper work intensity for Korean workers. This study was conducted from 2003 to 2005. Study subjects were recruited from 4 car parts assembly plant, 2 car assembly plant, 2 Heavy machine manufacturing plant and 2 shipyards. Total study subjects were 515 male workers. To estimate VO2max, sub-maximal test was conducted to measure VO275%max by bicycle ergometer (Combi Co, Aerobike 75XL II). Heartbeats were recorded with heartbeat recorder (Polar Electro Co, Finland, S810) during work. EE of work was calculated by recorded heartbeat and individual regression equation which was derived from sub-maximal test. Subjects were classified into 4 industry and 8 work posture, 23 job task categories. Mean EEs (S.D.) according to industry classification (kcal/min) were 4.9 (0.7), 4.8 (0.7), 4.9 (0.7), 5.0 (0.9), and 4.0 (0.5) for Car Part manufacture, Car Assembly, Ship Building, Heavy Machinery Manufacture, and Hospital Office, respectively. The results suggest that Korean male workers of exceeding to the NIOSH criteria will be needed to plan for job rescheduling to maintain $worker^{\circ}$Øs health. Further study to establish Korean work intensity standard would be needed.

Acquisition and Classification of ECG Parameters with Multiple Deep Neural Networks (다중 심층신경망을 이용한 심전도 파라미터의 획득 및 분류)

  • Ji Woon, Kim;Sung Min, Park;Seong Wook, Choi
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.424-433
    • /
    • 2022
  • As the proportion of non-contact telemedicine increases and the number of electrocardiogram (ECG) data measured using portable ECG monitors increases, the demand for automatic algorithms that can precisely analyze vast amounts of ECG is increasing. Since the P, QRS, and T waves of the ECG have different shapes depending on the location of electrodes or individual characteristics and often have similar frequency components or amplitudes, it is difficult to distinguish P, QRS and T waves and measure each parameter. In order to measure the widths, intervals and areas of P, QRS, and T waves, a new algorithm that recognizes the start and end points of each wave and automatically measures the time differences and amplitudes between each point is required. In this study, the start and end points of the P, QRS, and T waves were measured using six Deep Neural Networks (DNN) that recognize the start and end points of each wave. Then, by synthesizing the results of all DNNs, 12 parameters for ECG characteristics for each heartbeat were obtained. In the ECG waveform of 10 subjects provided by Physionet, 12 parameters were measured for each of 660 heartbeats, and the 12 parameters measured for each heartbeat well represented the characteristics of the ECG, so it was possible to distinguish them from other subjects' parameters. When the ECG data of 10 subjects were combined into one file and analyzed with the suggested algorithm, 10 types of ECG waveform were observed, and two types of ECG waveform were simultaneously observed in 5 subjects, however, it was not observed that one person had more than two types.

Design of Arrhythmia Classification System Based on 1-D Convolutional Neural Networks (1차원 합성곱 신경망에 기반한 부정맥 분류 시스템의 설계)

  • Kim, Seong-Woo;Kim, In-Ju;Shin, Seung-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.37-43
    • /
    • 2020
  • Recently, many researches have been actively to diagnose symptoms of heart disease using ECG signal, which is an electrical signal measuring heart status. In particular, the electrocardiogram signal can be used to monitor and diagnose arrhythmias that indicates an abnormal heart status. In this paper, we proposed 1-D convolutional neural network for arrhythmias classification systems. The proposed model consists of deep 11 layers which can learn to extract features and classify 5 types of arrhythmias. The simulation results over MIT-BIH arrhythmia database show that the learned neural network has more than 99% classification accuracy. It is analyzed that the more the number of convolutional kernels the network has, the more detailed characteristics of ECG signal resulted in better performance. Moreover, we implemented a practical application based on the proposed one to classify arrythmias in real-time.

CAB: Classifying Arrhythmias based on Imbalanced Sensor Data

  • Wang, Yilin;Sun, Le;Subramani, Sudha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2304-2320
    • /
    • 2021
  • Intelligently detecting anomalies in health sensor data streams (e.g., Electrocardiogram, ECG) can improve the development of E-health industry. The physiological signals of patients are collected through sensors. Timely diagnosis and treatment save medical resources, promote physical health, and reduce complications. However, it is difficult to automatically classify the ECG data, as the features of ECGs are difficult to extract. And the volume of labeled ECG data is limited, which affects the classification performance. In this paper, we propose a Generative Adversarial Network (GAN)-based deep learning framework (called CAB) for heart arrhythmia classification. CAB focuses on improving the detection accuracy based on a small number of labeled samples. It is trained based on the class-imbalance ECG data. Augmenting ECG data by a GAN model eliminates the impact of data scarcity. After data augmentation, CAB classifies the ECG data by using a Bidirectional Long Short Term Memory Recurrent Neural Network (Bi-LSTM). Experiment results show a better performance of CAB compared with state-of-the-art methods. The overall classification accuracy of CAB is 99.71%. The F1-scores of classifying Normal beats (N), Supraventricular ectopic beats (S), Ventricular ectopic beats (V), Fusion beats (F) and Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively. Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively.