Journal of the Korea Society of Computer and Information
/
v.18
no.9
/
pp.43-51
/
2013
Classification result by comprehensive analysis of rhythm section and heartbeat unit makes a reliable diagnosis of heart disease possible. In this paper, based on feature-points of ECG signals, rhythm analysis for constant section and heartbeat unit is conducted using rule-based classification and SVM-based classification respectively. Rhythm types are classified using a rule base deduced from clinical materials for features of rhythm section in rule-based classification, and monotonic rhythm or major abnormality heartbeats are classified using multiple SVMs trained previously for features of heartbeat unit in SVM-based classification. Experimental results for the MIT-BIH arrhythmia database show classification ratios of 68.52% by rule-based method alone and 87.04% by fusion method of rule-based and SVM-based for 11 rhythm types. The proposed fusion method is improved by about 19% through misclassification improvement for monotonic and arrangement rhythms by SVM-based method.
Long-term electrocardiogram data can be acquired by linking a Holter monitor to a mobile phone. However, most systems are designed to detect arrhythmia through heartbeat classification, and not just for supporting clinical decisions. In this paper, we propose an Abstracting algorithm, and introduce an analogous pateint search system using this algorithm. An analogous patient searcher summarizes each patient's typical pattern using the results of heartbeat, which can greatly simplify clinical activity. It helps to find patients with similar arrhythmia patterns, which can help in contributing to diagnostic clues. We have simulated these processes on data from the MIT-BIH arrhythmia database. As a result, the Abstracting algorithm provided a typical pattern to assist in reaching rapid clinical decisions for 64% of the patients. On an average, typical patterns and results generated by the abstracting algorithm summarized the results of heartbeat classification by 98.01%.
Journal of the Institute of Electronics and Information Engineers
/
v.51
no.9
/
pp.200-207
/
2014
Arrhythmia electrocardiogram signal contains a specific unusual heartbeat with abnormal morphology. Because unusual heartbeat is useful for diagnosis and classification of various diseases, such as arrhythmia, detection of unusual heartbeat from the arrhythmic ECG signal is very important. Amplitude and kurtosis at R-peak point and RR interval are characteristics of ECG signal on R-wave. In this paper, we provide a method for detecting unusual heartbeat based on these. Through the value of the attribute deviates more from the average value if unusual heartbeat is more certainly, the proposed method detects unusual heartbeat in order using the mean and standard deviation. From 15 ECG signals of MIT-BIH arrhythmia database which has R-wave distortion, we compare the result of conventional method which uses the fixed threshold value and the result of proposed method. Throughout the experiment, the sensitivity is significantly increased to 97% from 50% using the proposed method.
In obstetrics, cardiotocography is a procedure to record the fetal heartbeat and the uterine contractions usually during the last trimester of pregnancy. It helps to monitor patterns associated with the fetal activity and to detect the pathologies. In this paper, random forest classifier is used to classify normal, suspicious and pathological patterns based on the features extracted from the cardiotocograms. The results showed that random forest classifier can detect these classes successfully with overall classification accuracy of 93.6%. Moreover, important features are identified to reduce the feature space. It is found that using seven important features, similar classification accuracy can be achieved by random forest classifier (93.3%).
Journal of the Korea Society of Computer and Information
/
v.18
no.8
/
pp.131-139
/
2013
In this paper, we look into previous research in relation to each processing step for ECG diagnosis and propose detection and classification method of arrhythmia using rhythm features of ECG signal. Rhythm features for distribution of rhythm and heartbeat such as identity, regularity, etc. are extracted in feature extraction, and rhythm type is classified using rule-base constructed in advance for features of rhythm section in rhythm classification. Experimental results for all of rhythm types in the MIT-BIH arrhythmia database show detection performance of 100% for arrhythmia with only normal rhythm rule and applicability of classification for rhythm types with arrhythmia rhythm rules.
The more people use ambulatory electrocardiogram(ECG) for arrhythmia detection, the more researchers report the automatic classification algorithms. Most of the previous studies don't consider the un-balanced data distribution. Even in patients, there are much more normal beats than abnormal beats among the data from 24 hours. To solve this problem, the hierarchical classification using 21 features was adopted for arrhythmia abnormal beat detection. The features include R-R intervals and data to describe the morphology of the wave. To validate the algorithm, 44 non-pacemaker recordings from physionet were used. The hierarchical classification model with 2 stages on domain knowledge was constructed. Using our suggested method, we could improve the performance in abnormal beat classification from the conventional multi-class classification method. In conclusion, the domain knowledge based hierarchical classification is useful to the ECG beat classification with unbalanced data distribution.
Woo, Ji Hoon;Kang, Dongmug;Shin, Yong Chul;Kim, Myeong Ock;Son, Min Jung;Kim, Boo Wook;Cho, Byung Mann;Lee, Su Ill
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.16
no.2
/
pp.183-192
/
2006
Predicting energy expenditure (EE) is important to prevent work-related musculoskeletal disorders (WMSDs). The problem to predict EE is that the standard of EE is based on western data. The authors checked average EE by job categories to provide basic data for suggesting proper work intensity for Korean workers. This study was conducted from 2003 to 2005. Study subjects were recruited from 4 car parts assembly plant, 2 car assembly plant, 2 Heavy machine manufacturing plant and 2 shipyards. Total study subjects were 515 male workers. To estimate VO2max, sub-maximal test was conducted to measure VO275%max by bicycle ergometer (Combi Co, Aerobike 75XL II). Heartbeats were recorded with heartbeat recorder (Polar Electro Co, Finland, S810) during work. EE of work was calculated by recorded heartbeat and individual regression equation which was derived from sub-maximal test. Subjects were classified into 4 industry and 8 work posture, 23 job task categories. Mean EEs (S.D.) according to industry classification (kcal/min) were 4.9 (0.7), 4.8 (0.7), 4.9 (0.7), 5.0 (0.9), and 4.0 (0.5) for Car Part manufacture, Car Assembly, Ship Building, Heavy Machinery Manufacture, and Hospital Office, respectively. The results suggest that Korean male workers of exceeding to the NIOSH criteria will be needed to plan for job rescheduling to maintain $worker^{\circ}$Øs health. Further study to establish Korean work intensity standard would be needed.
As the proportion of non-contact telemedicine increases and the number of electrocardiogram (ECG) data measured using portable ECG monitors increases, the demand for automatic algorithms that can precisely analyze vast amounts of ECG is increasing. Since the P, QRS, and T waves of the ECG have different shapes depending on the location of electrodes or individual characteristics and often have similar frequency components or amplitudes, it is difficult to distinguish P, QRS and T waves and measure each parameter. In order to measure the widths, intervals and areas of P, QRS, and T waves, a new algorithm that recognizes the start and end points of each wave and automatically measures the time differences and amplitudes between each point is required. In this study, the start and end points of the P, QRS, and T waves were measured using six Deep Neural Networks (DNN) that recognize the start and end points of each wave. Then, by synthesizing the results of all DNNs, 12 parameters for ECG characteristics for each heartbeat were obtained. In the ECG waveform of 10 subjects provided by Physionet, 12 parameters were measured for each of 660 heartbeats, and the 12 parameters measured for each heartbeat well represented the characteristics of the ECG, so it was possible to distinguish them from other subjects' parameters. When the ECG data of 10 subjects were combined into one file and analyzed with the suggested algorithm, 10 types of ECG waveform were observed, and two types of ECG waveform were simultaneously observed in 5 subjects, however, it was not observed that one person had more than two types.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.1
/
pp.37-43
/
2020
Recently, many researches have been actively to diagnose symptoms of heart disease using ECG signal, which is an electrical signal measuring heart status. In particular, the electrocardiogram signal can be used to monitor and diagnose arrhythmias that indicates an abnormal heart status. In this paper, we proposed 1-D convolutional neural network for arrhythmias classification systems. The proposed model consists of deep 11 layers which can learn to extract features and classify 5 types of arrhythmias. The simulation results over MIT-BIH arrhythmia database show that the learned neural network has more than 99% classification accuracy. It is analyzed that the more the number of convolutional kernels the network has, the more detailed characteristics of ECG signal resulted in better performance. Moreover, we implemented a practical application based on the proposed one to classify arrythmias in real-time.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.7
/
pp.2304-2320
/
2021
Intelligently detecting anomalies in health sensor data streams (e.g., Electrocardiogram, ECG) can improve the development of E-health industry. The physiological signals of patients are collected through sensors. Timely diagnosis and treatment save medical resources, promote physical health, and reduce complications. However, it is difficult to automatically classify the ECG data, as the features of ECGs are difficult to extract. And the volume of labeled ECG data is limited, which affects the classification performance. In this paper, we propose a Generative Adversarial Network (GAN)-based deep learning framework (called CAB) for heart arrhythmia classification. CAB focuses on improving the detection accuracy based on a small number of labeled samples. It is trained based on the class-imbalance ECG data. Augmenting ECG data by a GAN model eliminates the impact of data scarcity. After data augmentation, CAB classifies the ECG data by using a Bidirectional Long Short Term Memory Recurrent Neural Network (Bi-LSTM). Experiment results show a better performance of CAB compared with state-of-the-art methods. The overall classification accuracy of CAB is 99.71%. The F1-scores of classifying Normal beats (N), Supraventricular ectopic beats (S), Ventricular ectopic beats (V), Fusion beats (F) and Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively. Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.