• Title/Summary/Keyword: Healthy volunteers

Search Result 860, Processing Time 0.028 seconds

Determination of superdrol and its metabolites in human urine by LC/TOF-MS and GC/TOF-MS (LC/TOF-MS와 GC/TOF-MS를 이용한 인체 내 요시료 중 Superdrol과 그 대사체의 분석)

  • Choi, Hae-Min;Yum, Tae-Woo;Paeng, Gi-Jeong;Kim, Yun-Je
    • Analytical Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.183-192
    • /
    • 2011
  • This study was done for the determination and excretion profile of superdrol and its metabolites in human urine using both liquid chromatography with electrospray ionization mass spectrometry and gas chromatography with mass spectrometry after trimethylsilylation. Superdrol and its two metabolites were detected in human urine after administration of superdrol to healthy volunteers. The intra-day recovery ranged 89.7-113.2%, accuracy ranged 91.8-113.8% and reproducibility ranged 0.2-6.8% and inter-day recovery ranged 89.3-104.1%, accuracy ranged 95.2-103.0%, reproducibility ranged 0.7-7.8%. We found that superdrol M1 was a hydration at C-3 and superdrol M2 was a hydroxylation at D-ring. Superdrol and two metabolites were excreted as their glucuronided fractions. The glucuro-/sulfa-conjugated ratio of superdrol, superdrol M1 and superdrol M2 were 0.02, 0.02, 0.01, respectively. The excretion studies showed that superdrol and two metabolites were reached 4.3 h after oral administration and superdrol and superdrol M1 were detected until 48 h in human urine.

Anthropometric Analysis of the Mouth in Koreans (한국인 입에 대한 생체계측학적 연구)

  • Kim, Soon Heum;Kim, Na Yeon;Lee, Soo Hyang;Choi, Hyun Gon;Shin, Dong Hyeok;Uhm, Ki Il;Lee, Jeong Yong;Song, Wu Chul;Koh, Ki Seok
    • Archives of Plastic Surgery
    • /
    • v.35 no.2
    • /
    • pp.139-146
    • /
    • 2008
  • Purpose: The objective of this study is anthropometric analysis of mouth and lower face of Korean. The relationship of soft-tissue to underlying bony structures determine the overall aesthetics of the face. The goal of aesthetic surgery of the face is to achieve the ideal normal and enhance the aging face. The purpose of present study was to determine the change of the morphology of the mouth and lower face based on soft-tissue landmarks according to age group to facilitate prediction during aesthetic surgery. Methods: The standardized photographs of 2,018 healthy volunteers(18 to 79 years of age; 1,070 males, 948 females) were investigated. Age groups were classified into young, middle-aged, and elderly groups. Five and seven items were measured on frontal and lateral view photographs, respectively. Individual dimensions were compared in the three age groups and between males and females. Results: The width of mouth is 4.5 times larger than that of philtrum. Most of measured data decreased with age. However, woman's lip width of the mouth somewhat increased from the young to elderly. The width of lower face is 2.5 times larger than mouth in young age group and increased slightly from the young to middle-aged and thereafter slightly decreased to elderly group. Upper lip was more higher than lower lip and male lip was more higher than female. But male and female lip height is similar at old age. Conclusion: Most of Koreans showed prominent lower face because of the development or protrusion of the mandible. And the descent of soft-tissue around the mouth was one of the significant characteristics of senile change. The posterior retrusion of the subnasal was an another characteristic. This study will help to elucidate the age-related dimensional differences of the human being and to provide useful information for clinical applications in oral and aesthetic surgery.

Changes of Regional Cerebral Glucose Metabolism in Normal Aging Process : A Study With EDG PET (정상적인 노화 과정에서 국소뇌포도당대사의 변화: FDG PET 연구)

  • Yoon, Joon-Kee;Kim, Sang-Eun;Lee, Kyung-Han;Choi, Yong;Choe, Yearn-Seong;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.4
    • /
    • pp.231-240
    • /
    • 2001
  • Purpose: Normal aging results in detectable changes in the brain structure and function. We evaluated the changes of regional cerebral glucose metabolism in the normal aging process with FDG PET. Materials and Methods: Brain PET images were obtained in 44 healthy volunteers (age range 20-69 'y'; M:F = 29:15) who had no history of neuropsychiatric disorders. On 6 representative transaxial images, ROIs were drawn in the cortical and subcortical areas. Regional FDG uptake was normalized using whole brain uptake to adjust for the injection dose and correct for nonspecific declines of glucose metabolism affecting all brain areas equally. Results: In the prefrontal, temporoparietal and primary sensorimotor cortex, the normalized FDG uptake (NFU) reached a peak in subjects in their 30s. The NFU in the prefrontal and primary sensorimotor cortex declined with age after 30s at a rate of 3.15%/decade and 1.93%/decade, respectively. However, the NFU in the temporoparietal cortex did not change significantly with age after 30s. The anterior (prefrontal) posterior (temporoparietal) gradient peaked in subjects in their 30s and declined with age thereafter at a rate of 2.35%/decade. The NFU in the caudate nucleus was decreased with age after 20s at a rate of 2.39%/decade. On the primary visual cortex, putamen, and thalamus, the NFU values did not change significantly throughout the ages covered. These patterns were not significantly different between right and left cerebral hemispheres. Of interest was that the NFU in the left cerebellar cortex was increased with age after 20s at a rate of 2.86%/decade. Conclusion: These data demonstrate regional variation of the age-related changes in the cerebral glucose metabolism, with the most prominent age-related decline of metabolism in the prefrontal cortex. The increase in the cerebellar metabolism with age might reflect a process of neuronal plasticity associated with aging.

  • PDF

Bioequivalence of Lovaload Tablet to Mevacor Tablet (Lovastatin 20 mg) (메바코 정 (로바스타틴 20 mg)에 대한 로바로드 정의 생물학적 동등성)

  • Song, Woo-Heon;Kim, Jung-Min;Cho, Seong-Wan;Kim, Jae-Hyun;Lim, Jong-Lae;Shin, Hee-Jong;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.4
    • /
    • pp.283-288
    • /
    • 1998
  • Lovastatin, one of the potent cholesterol-lowering agents, is an inactive lactone prodrug which is metabolized to its active open acid, lovastatin acid (LVA). Bioequivalence study of two lovastatin preparations, the test drug ($Mevacor^{\circledR}$: Chungwae Pharmaceutical Co., Ltd.) and the reference drug ($Lovaload^{\circledR}$: Chong Kun Dang Pharmaceutical Co., Ltd.), was conducted according to the guidelines of Korea Food and Drug Administration (KFDA). Fourteen healthy male volunteers, $23.9{\pm}3.9$ years old and $67.6{\pm}8.0$ kg of body weight in average, were divided randomly into two groups and administered the drug orally at the dose of 160 mg as lovastatin in a $2{\times}2$ crossover study. Plasma concentrations of lovastatin acid were analysed by HPLC method for 12 hr after administration. The extent of bioavailability was obtained from the plasma concentration-time profiles of total lovastatin acid after alkaline hydrolysis of the plasma samples. By alkaline hydrolysis, trace amounts of unmetabolized lovastatin were converted to lovastatin acid. The $AUC_{0-12hr}$ was calculated by the linear trapezoidal rule method. The $C_{max}$ and $T_{max}$ were compiled directly from the plasma drug concentration-time data. Student's t-test indicated no significant differences between the formulations in these parameters. Analysis of variance (ANOVA) revealed that there were no differences in AUC, $C_{max}$, and $T_{max}$ between the formulations. The apparent differences between the formulations were far less than 20% (e.g., 7.07, 5.77 and 1.18% for AUC, $C_{max}$, and $T_{max}$, respectively). Minimum detectable differences(%) between the formulations at ${\alpha}=0.05$ and $1-{\beta}=0.8$ were less than 20% (e.g., 17.2, 15.1, and 15.9% for AUC, Cmax, and Tmax, respectively). The 90% confidence intervals for these parameters were also within ${\pm}20%$ (e.g.. $-5.20{\sim}19.3$, $-5.00{\sim}16.5$, and $-10.2{\sim}12.5%$ for AUC, $C_{max}$, and $T_{max}$, respectively). These results satisfied the bioequivalence criteria of KFDA guidelines, indicating that the two formulations of lovastatin were bioequivalent.

  • PDF

Bioequivalence of Prepulsid Tablet to Cisaple Tablet (Cisapride 5 mg) (프레팔시드 정(시사프리드 5 mg)에 대한 시사플 정의 생물학적 동등성)

  • Kwak, Son-Hyuk;Nam, Jin-Kyung;Jiang, Ge;Han, Jung-Hee;Woo, Jong-Soo;Rhee, Gye-Ju;Park, Jong-Woo;Koo, Sun-Hoe;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.1
    • /
    • pp.55-59
    • /
    • 2000
  • Bioequivalence of two cisapride tablets, test drug ($Cisple^{\circledR}$ tablet: Hanmi Pharm Co., Ltd.) and reference drug ($Prepulsid^{\circledR}$ tablet: Janssen Pharm. Co., Ltd.), was evaluated according to the guidelines of Korea Food and Drug Administration (KFDA). Twenty two healthy male volunteers were divided randomly into two groups and administered the drug orally at the dose of 10 mg as cisapride in a $2{\times}2$ crossover study. There was a week washout period between administrations. Blood samples were taken at predetermined time intervals for 36 hr and the plasma concentration of cisapride was determined by a HPLC method. $AUC_{0-36hr}$ (area under the plasma concentration-time curve from time zero to 36 hr), $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were estimated from the plasma drug concentration-time data. Analysis of variance (ANOVA) revealed no difference in $AUC_{0-36hr},\;C_{max}\;and\;T_{max}$ between two products. The apparent differences of these parameters between two products were less than 20% (i.e., 5.38, 6.17 and 0.00% for $AUC_{0-36hr},\;C_{max}\;and\;T_{max},$ respectively). The powers $(1-\beta)$ for $AUC_{0-36hr},\;C_{max}\;and\;T_{max}$ were over 0.9. Minimal detectable differences $(\Delta)$ at ${\alpha}=0.05,\;1-{\beta}=0.8$ were less than 20% (i.e. 17.67, 14.84 and 19.72% for $AUC_{0-36hr},\;C_{max}\;and\;T_{max},$ respectively). The 90% confidence intervals $(\delta)$ for these parameters were also within ${\pm}20%$ $(i.e.\;-4.97\;{\le}{\delta}{\le}\;15.73,\;-2.53{\le}{\delta}{\le}\;14.86\;and\;-11.55{\le}{\delta}{\le}\;11.55$ for $AUC_{0-36hr},\;C_{max}\;and\;T_{max},$ respectively). These results satisfied the criteria of KFDA guidelines for bioequivalence, indicating the two tablets of cisapride were bioequivalent.

  • PDF

Bioequivalence of Samchundang Lercanidipine Tablet 10 mg to Zanidip Tablet (Lercanidipine Hydrochloride 10 mg) by Liquid Chromatography with Tandem Mass Spectrometry

  • Kim, Se-Mi;Kim, Hwan-Ho;Shin, Sae-Byeok;Kang, Hyun-Ah;Cho, Hea-Young;Kim, Yoon-Gyoon;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.5
    • /
    • pp.315-321
    • /
    • 2007
  • The purpose of the present study was to evaluate the bioequivalence of two lercanidipine hydrochloride tablets, Zanidip tablet (LG Life Sciences Ltd., Korea, reference drug) and Samchundang Lercanidipine tablet 10 mg (Sam Chun Dang Pharm. Co. Ltd., Korea, test drug), according to the guidelines of Korea Food and Drug Administration (KFDA). After adding an internal standard (amlodipine maleate) to human serum, serum samples were extracted using hexan-isoamyl alcohol (100:1, v/v). Compounds were analyzed by liquid chromatography/tandem mass spectrometry. This method showed linear response over the concentration range of 0.05-20 ng/mL with correlation coefficient of 0.9999. The lower limit of quantitation using 0.5 mL of serum was 0.05 ng/mL which was sensitive enough for pharmacokinetic studies. Thirty healthy male Korean volunteers received each medicine at the lercanidipine hydrochloride dose of 20 mg in a $2\;{\times}\;2$ crossover study. There was a one-week washout period between the doses. Serum concentrations of lercanidipine were monitored by an LC/MS/MS fer over a period of 24 hr after the administration. $AUC_t$ (the area under the serum concentration-time curve from time 0 to 24 hr) was calculated by the linear trapezoidal rule method. $C_{max}$ (the maximum serum drug concentration) and $T_{max}$ (the time to reach $C_{max}$) were compiled from the serum concentration-time data. Analysis of variance was carried out using logarithmically transformed $AUC_t$ and $C_{max}$. No significant sequence effect was found for all of the bioavailability parameters, indicating that the crossover design was properly performed. The 90% confidence intervals of the $AUC_t$ ratio and the $C_{max}$ ratio for Samchundang Lercanidipine/Zanidip were log 0.9505-log 1.2258 and log 0.9987-log 1.2013, respectively. These values were within the acceptable bioequivalence intervals of log 0.80-log 1.25. Thus, the criteria of the KFDA guidelines for the bioequivalence was satisfied, indicating Samchundang Lercanidipine tablet 10 mg and Zanidip tablet are bioequivalent.

Bioequivalence of Cholicerin Soft Capsule to Gliatilin Soft Capsule (Choline Alphoscerate 400 mg)

  • Kang, Hyun-Ah;Kim, Se-Mi;Kang, Seung-Rae;Kang, Min-Sun;Lee, Sang-No;Kwon, In-Ho;Yoo, Hee-Doo;Kim, Yoon-Gyoon;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.2
    • /
    • pp.109-115
    • /
    • 2010
  • The purpose of the present study was to evaluate the bioequivalence of two choline alphoscerate soft capsules, Gliatilin soft capsule (Daewoong Pharmaceuticals Co., Ltd.) and Cholicerin soft capsule (Sam Chun Dang Pharm. Co., Ltd.), according to the guidelines of Korea Food and Drug Administration (KFDA). Serum concentrations of choline after oral administration of choline alphoscerate were determined using a validated LC/MS/MS method. This method showed linear response over the concentration range of 0.5-20 ${\mu}g$/mL with correlation coefficient of 0.9999. The lower limit of quantitation using 100 ${\mu}L$ of serum was 0.5 ${\mu}g$/mL which was sensitive enough for pharmacokinetic studies. Thirty six healthy male Korean volunteers received each medicine at the choline alphoscerate dose of 1200 mg in a $2{\times}2$ crossover study. There was a one-week washout period between the doses. Blood samples were taken at predetermined time intervals up to 8 hr. $AUC_t$ (the area under the serum concentration-time curve from time 0 to 8 hr) was calculated by the linear trapezoidal rule method. $C_{max}$ (the maximum serum drug concentration) and $T_{max}$ (the time to reach $C_{max}$) were compiled from the serum concentration-time data. Analysis of variance was carried out using logarithmically transformed $AUC_t$ and $C_{max}$. No significant sequence effect was found for all of the bioavailability parameters, indicating that the crossover design was properly performed. The 90% confidence intervals of the $AUC_t$ ratio and the $C_{max}$ ratio for Cholicerin/Gliatilin were log0.9998-log1.1172 and log0.9938-1.0944, respectively. These values were within the acceptable bioequivalence intervals of log0.80-log1.25. Thus, the criteria of the KFDA guidelines for the bioequivalence was satisfied, indicating Cholicerin soft capsule and Gliatilin soft capsule are bioequivalent.

EEG Study for the Effects of Mouth Breathing on Brain Functions (구강 호흡이 뇌기능에 미치는 영향에 관한 EEG 연구)

  • Lee, Kyung-Jin;Lee, Song-Yi;Park, So-Young;Jang, So-Ra;Kang, Chang-Ki
    • Science of Emotion and Sensibility
    • /
    • v.19 no.4
    • /
    • pp.119-126
    • /
    • 2016
  • In this study, we investigated the effects of mouth breathing on brain activity through electroencephalogram (EEG). EEG was performed on 12 healthy volunteers of age ranging from 21 to 27 years (male: female = 6:6, non-smoker). Brain waves on resting state (Rest_N/Rest_M) and auditory-language stimuli state (Eng_N/Eng_M) were recorded during mouth and nose breathing. Four different regions (R1~R4) were classified based on the brain functionality. And each channel (e.g., Pf1 and Pf2) and frequency (${\alpha}$, ${\beta}$, ${\gamma}$, and ${\theta}$) were analyzed using their absolute power ratios of fast Fourier transform (FFT). The results showed that there was no significant difference between Rest_N and Rest_M. Eng_N had significantly higher brain activity than Rest_N; on the other hand, there was no significant difference between Rest_M and Eng_M. These results demonstrate that mouth-breathing on resting state does not induce any significant effects on brain activity and/or functionality, even though it causes subtle temporary inconvenience. In addition to the uncomfort, the brain activity can be adversely influenced by mouth-breathing, which could lower the cognitive skills under certain circumstances.

1/f scaling exponent of EEG depending on different sensitivities of behavioral activation and inhibition systems for young and elderly groups (청년층과 노인층의 행동활성화체계 및 행동억제체계 민감도에 따른 뇌파의 1/f 스케일링 분석)

  • Jin Seung-Hyun;Kim Wuon-Shik;Noh Gi-Young
    • Science of Emotion and Sensibility
    • /
    • v.8 no.4
    • /
    • pp.415-422
    • /
    • 2005
  • The purpose of the present study was to investigate the differences of nonlinear characteristics of electroencephalogram (EEG) depending on different sensitivities of behavioral activation system (BAS) and behavioral inhibition system (BIS) of young and elderly groups. The EEGs from Fpl and Fp2 electrodes were recorded during resting condition. The young and elderly groups consisted of 19 and 31 healthy right-handed volunteers, respectively. We estimated 1/f scaling exponent which reflects the nonlinear dynamical complexity of EEG. As results, we found the differences of 1/f scaling exponent between young ant elderly BAS sensitive groups. The 1/f scaling exponent of young BAS sensitive group showed significantly higher values than those of elderly BAS sensitive group at the left prefrontal area (Fpl). The young BAS sensitive group had also a tendency to higher 1/f scaling exponent at the right prefrontal area (Fp2). Decrease of the 1/f scaling exponent indicates the increase of complexity and the decrease of the amount of information related to the statistical distribution. Therefore, the elderly BAS sensitive group has higher complexity than young BAS sensitive group, though they were all classified as BAS sensitive group by BAS/BIS scale. Our results suggest the possibility of correlation between BAS sensitivity an4 age.

  • PDF

Development of Korean Tissue Probability Map from 3D Magnetic Resonance Images (3차원 MR 영상으로부터의 한국인 뇌조직확률지도 개발)

  • Jung Hyun, Kim;Jong-Min, Lee;Uicheul, Yoon;Hyun-Pil, Kim;Bang Bon, Koo;In Young, Kim;Dong Soo, Lee;Jun Soo, Kwon;Sun I., Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.323-328
    • /
    • 2004
  • The development of group-specific tissue probability maps (TPM) provides a priori knowledge for better result of cerebral tissue classification with regard to the inter-ethnic differences of inter-subject variability. We present sequential procedures of group-specific TPM and evaluate the age effects in the structural differences of TPM. We investigated 100 healthy volunteers with high resolution MRI scalming. The subjects were classified into young (60, 25.92+4.58) and old groups (40, 58.83${\pm}$8.10) according to the age. To avoid any bias from random selected single subject and improve registration robustness, average atlas as target for TPM was constructed from skull-stripped whole data using linear and nonlinear registration of AIR. Each subject was segmented into binary images of gray matter, white matter, and cerebrospinal fluid using fuzzy clustering and normalized into the space of average atlas. The probability images were the means of these binary images, and contained values in the range of zero to one. A TPM of a given tissue is a spatial probability distribution representing a certain subject population. In the spatial distribution of tissue probability according to the threshold of probability, the old group exhibited enlarged ventricles and overall GM atrophy as age-specific changes, compared to the young group. Our results are generally consistent with the few published studies on age differences in the brain morphology. The more similar the morphology of the subject is to the average of the population represented by the TPM, the better the entire classification procedure should work. Therefore, we suggest that group-specific TPM should be used as a priori information for the cerebral tissue classification.