DOI QR코드

DOI QR Code

EEG Study for the Effects of Mouth Breathing on Brain Functions

구강 호흡이 뇌기능에 미치는 영향에 관한 EEG 연구

  • Lee, Kyung-Jin (Department of Biomedical Engineering, College of Health Science, Gachon University) ;
  • Lee, Song-Yi (Hankuk Academy of Foreign Studies) ;
  • Park, So-Young (Department of Biomedical Engineering, College of Health Science, Gachon University) ;
  • Jang, So-Ra (Department of Radiological Science, College of Health Science, Gachon University) ;
  • Kang, Chang-Ki (Department of Radiological Science, College of Health Science, Gachon University)
  • 이경진 (가천대학교 보건과학대학 의용생체공학과) ;
  • 이송이 (용인한국외국어대학교부설고등학교) ;
  • 박소영 (가천대학교 보건과학대학 의용생체공학과) ;
  • 장소라 (가천대학교 보건과학대학 방사선학과) ;
  • 강창기 (가천대학교 보건과학대학 방사선학과)
  • Received : 2016.07.06
  • Accepted : 2016.08.03
  • Published : 2016.12.31

Abstract

In this study, we investigated the effects of mouth breathing on brain activity through electroencephalogram (EEG). EEG was performed on 12 healthy volunteers of age ranging from 21 to 27 years (male: female = 6:6, non-smoker). Brain waves on resting state (Rest_N/Rest_M) and auditory-language stimuli state (Eng_N/Eng_M) were recorded during mouth and nose breathing. Four different regions (R1~R4) were classified based on the brain functionality. And each channel (e.g., Pf1 and Pf2) and frequency (${\alpha}$, ${\beta}$, ${\gamma}$, and ${\theta}$) were analyzed using their absolute power ratios of fast Fourier transform (FFT). The results showed that there was no significant difference between Rest_N and Rest_M. Eng_N had significantly higher brain activity than Rest_N; on the other hand, there was no significant difference between Rest_M and Eng_M. These results demonstrate that mouth-breathing on resting state does not induce any significant effects on brain activity and/or functionality, even though it causes subtle temporary inconvenience. In addition to the uncomfort, the brain activity can be adversely influenced by mouth-breathing, which could lower the cognitive skills under certain circumstances.

본 연구는 구강 호흡이 뇌기능에 미치는 영향을 뇌전도(EEG : electroencephalogram)를 통해 관찰하고자 한다. 신체가 건강한 12명의 피험자(남성: 6명, 여성: 6명, 나이: 21~27, 비흡연자)는 뇌파를 측정하기 위해 두피에 전극을 부착한 상태로 휴지기 상태에서 비강(Rest_N) 및 구강 호흡(Rest_M)을 수행하였고, 영어 대본을 사용한 청각언어자극이 주어지는 상황에서 비강(Eng_N) 및 구강 호흡(Eng_M)을 수행하였다. 각각의 뇌파는 뇌의 기능별로 크게 4 구역(R1~R4)으로 나뉘어 FFT (Fast Fourier Transform)을 통해 각각의 채널별(e.g., Pf1 and Pf2) 및 주파수 대역별(${\alpha}$, ${\beta}$, ${\gamma}$, ${\theta}$)로 절대 파워(Absolute Power) 비율을 살펴보았다. 도출된 결과에서는 Rest_N과 Rest_M 상태의 뇌파는 서로 유의미한 차이를 보이지 않았다. 비강 호흡 수행 중 청각언어자극이 주어졌을 때(Rest_N/Eng_N)의 뇌파를 비교했을 경우, 뇌파의 활동이 휴지기 상태의 뇌파 활동보다 통계적으로 유의미하게 높은 것으로 나타났다. 하지만 같은 조건상에서 구강호흡을 했을 때(Rest_M/Eng_M)는 비강 호흡을 실시했을 때와 달리 대부분의 뇌 구역과 주파수 대역에서 유의미한 차이가 나타나지 않았다. 동일한 조건의 자극에도 불구하고 구강 호흡을 하는 경우는 뇌기능의 변화가 비강 호흡과 다른 결과를 나타내었다.

Keywords

References

  1. Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M., & Halgren, E. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences of the United States of America, 103(2), 449-454. https://doi.org/10.1073/pnas.0507062103
  2. Bresolin, D., Shapiro, G. G., Shapiro, P. A., Dassel, S. W., Furukawa, C. T., Pierson, W. E., Chapko, M., & Bierman, C. W. (1984). Facial characteristics of children who breathe through the mouth. Pediatrics, 73(5), 622-625.
  3. Chung, S. C. & Lim, D. W. (2008). Effect of highly concentrated oxygen administration on addition task performance and physiological signals. Science of Emotion and Sensibility, 11(1), 105-112.
  4. Chung, S. C., You, J. H., Yi, J. H., & Sohn, J. H. (2006). Influence of 30% oxygen on heart rate and SPO2 during cycle exercise in healthy subjects. Science of Emotion and Sensibility, 9(1), 1-7.
  5. Chung Leng Muñoz, I. & Beltri Orta, P. (2014). Comparison of cephalometric patterns in mouth breathing and nose breathing children. International Journal of Pediatric Otorhinolaryngology, 78(7), 1167-1172. https://doi.org/10.1016/j.ijporl.2014.04.046
  6. Daly, W. J. & Bondurant, S. (1962). Effects of oxygen breathing on the heart rate, blood pressure, and cardiac index of normal men - resting, with reactive hyperemia, and after atropine. Journal of Clinical Investigation, 41(1), 126-132. https://doi.org/10.1172/JCI104454
  7. Gabrieli, J. D. E., Fleischman, D. A., Keane, M. M., Reminger, S. L., & Morrell, F. (1995). Double dissociation between memory systems underlying explicit and implicit memory in the human brain. Psychological Science, 6(2), 76-82. https://doi.org/10.1111/j.1467-9280.1995.tb00310.x
  8. Gleeson, K., Zwillich, C. W., Braier, K., & White, D. P. (1986). Breathing route during sleep. American Review of Respiratory Disease, 134(1), 115-120.
  9. Gould, G. A., Forsyth, I. S., & Flenley, D. C. (1986). Comparison of two oxygen conserving nasal prong systems and the effects of nose and mouth breathing. Thorax, 41(10), 808-809. https://doi.org/10.1136/thx.41.10.808
  10. Hasselmo, M. E. (2005). What is the function of hippocampal theta rhythm?-linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus, 15(7), 936-949. https://doi.org/10.1002/hipo.20116
  11. Jensen, O. & Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. European Journal of Neuroscience, 15(8), 1395-1399. https://doi.org/10.1046/j.1460-9568.2002.01975.x
  12. Marcus, C. L. (2001). Sleep-disordered breathing in children. American Journal of Respiratory and Critical Care Medicine, 164(1), 16-30. https://doi.org/10.1164/ajrccm.164.1.2008171
  13. Marzbani, H., Marateb, H., & Mansourian, M. (2016). Methodological note: neurofeedback: a comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience Journal, 7(2), 143-158.
  14. Morton, A. R., King, K., Papalia, S., Goodman, C., Turley, K. R., & Wilmore, J. H. (1995). Comparison of maximal oxygen consumption with oral and nasal breathing. Australian Journal of Science and Medicine in Sport, 27(3), 51-55.
  15. Paul, J. L. & Nanda, R. S. (1973). Effect of mouth breathing on dental occlusion. The Angle Orthodontist, 43(2), 201-206.
  16. Posner, M. I., Petersen, S., Fox, P., & Raichle, M. (1988). Localization of cognitive operations in the human brain. Science, 240(4859), 1627-1631. https://doi.org/10.1126/science.3289116
  17. Zhou, W. & Gotman, J. (2005). Removing eye-movement artifacts from the EEG during the intracarotid amobarbital procedure. Epilepsia, 46(3), 409-414. https://doi.org/10.1111/j.0013-9580.2005.50704.x