• Title/Summary/Keyword: Healthy plant

Search Result 515, Processing Time 0.028 seconds

Seasonal Effects on Shoot Regeneration from Petal Explants of Chrysanthemum (Chrysanthemum morifolium) cv. 'Baeksun'

  • Naing, Aung Htay;Kim, Chang Kil
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.4
    • /
    • pp.175-177
    • /
    • 2014
  • This is the first report describing the seasonal conditions affecting shoot regeneration by the chrysanthemum cv. Baeksun. The shoot regeneration from petal explants was found to be more favorable from September to December, reaching the highest values in December. In addition, the quality of the shoots was also influenced according to the season of the explant collection, where healthy and uniform plants were derived from the explants collected in December. Choosing the proper season for explant collection affected the successive plant growth parameters (i.e., plant height and fresh weight). Thus, the current results strongly suggest that season plays an important role in plant tissue culturing, which is an essential tool for micropropagation and Agro-bacterium-mediated genetic transformation studies.

In vitro shoot proliferation of Alnus japonica (Thunberg) Steudel

  • Kang, Ho-duck;Lee, Min-Soon
    • Plant Resources
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • In vitro proliferation system was achieved by using nodal segment excised from greenhouse grown juvenile stock plants of Alnus japonica. Stem explants were cultured on MS medium supplemented with different plant growth regulators of cytokinin and/or their combinations. The most effective cytokinin source was the combination of zeatin 2.0 mg/L and TDZ 0.05 mg/L producing the average number of shoots (16.8 $\pm$ 3.6). In addition, healthy roots were formed after small clumps of shoots were transferred to half strength of MS medium containing IBA 0.02 mg/L with optimal rooting capacity. Soil acclimatization was successfully conducted in cell tray containing artificially mixed soil with 92 % survival rate.

  • PDF

Injury Symptom of Egg Plant Grown in a High pH Rockwool Amended with Ammonium Phosphate (인산암모늄 처리 고산도 암면에서 자란 가지생육장해증상)

  • Kim, Yoo-Hak;Lee, Hyeong-Yong;Kim, Myung-Sook;Kang, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.975-977
    • /
    • 2010
  • Ammonium nitrogen is volatilized as ammonia at high pH soil. This study was conducted to observe an injury cause of egg plant grown in a high pH rockwool amended with ammonium phosphate. The etiolation symptom (yellowing) was appeared on veins of a leaf but not in healthy root when nutrient solution containing ammonium phosphate in addition to essential elements was applied in a top soil of which pH was 7.8. However, the same symptom did not appeared in the egg plant from the top soil in which the nutrition solution containing potassium phosphate instead of ammonium phosphate was applied. pHs were similar between these two different solutions. This revealed that the injury was caused by ammonia gas.

Witches' broom of jujube tree(Zizyphus jujuba MILL. var. Inermis Rehd.) IV Effect of low temperature in winter upon the appearance of symptom (대추나무 미친병에 관한 연구 IV 동기저온과 병징발현과의 관계)

  • Kim C. J.
    • Korean journal of applied entomology
    • /
    • v.4
    • /
    • pp.7-10
    • /
    • 1965
  • In an experiment to evaluate the various aspects of symptom of witches' broom of jujube tree with two different kinds of scions, taken from diseased plant and stem- grafted upon sound stocks-one cut before wintering(stored in cellar), the other after wintering, it was observed that the disease rate of those cut before wintering(Nov.) was $\98\%$ whereas those cut after wintering(March) showed much lower rate, $3\%$ initially and gradually increased up to $39\%$. In another experiment of diseased bud grafted into healthy seedling, the finding made in the following year was that 14 stocks(only one of which salt union by callusing) were infected out of the given 23- in the initial stage only 4, yet gradually increased to the number of 14. The shoots from the ground portion of the diseased stock were in general more quickly subjected to the disease than the others. Under natural condition, the diseased trees develop at first seemingly the same leaves as healthy ones; it is not until the branches and loaves grow to a considerable degree that the symptom appears. Once appearing, tile disease grows and the symptom continues to appear as late as in Sept. and early Oct., causing tile plant to develop the extraordinary branches and leaves of extremely reduced size, the typical symptom of witches' broom. Such phenomenon can be observed in the experiments of the foregoing paragraphs. And the suckers and roots of diseased plant are bound to be infected, it was found out with no exception. Viewing from the results of the above experiments and observation, it is believed that the low temperature during winter causes the virus in the above-ground portion of diseased plant to diminish or inactivated, and subsequently the virus in the roots moves up or multiply in the sprouting season.

  • PDF

Symptoms and Damages of Powdery Mildew on Leafy Lettuce Caused by Podosphaera fusca (Podosphaera fusca에 의한 상추 흰가루병의 증상과 피해)

  • Jee, Hyeong-Jin;Shim, Chang-Ki;Ryu, Kyung-Yul;Shin, Hyeon-Dong
    • Research in Plant Disease
    • /
    • v.12 no.3
    • /
    • pp.294-297
    • /
    • 2006
  • Leafy lettuce(Lactuca sativa L.) is one of the most important vegetable crops in Korea, cultivated throughout the year in greenhouses. During the autumn of 2005, powdery mildew of lettuce that is a new disease caused by Podosphaera fusca occurred in several plantings grown in plastic houses near Suwon in central Korea. Further survey on commercial fields of the plant in central and southern Korea revealed its widespread occurrence and severe losses. Infections occur on upper part of mature leaves often cause leaf distortions, withering, and reduced vigor and growth. Among 184 greenhouses surveyed 121 were infested by the disease and 52 showed over 10% infection rate. Yields were greatly reduced by the disease reaching only 59% compared to healthy plants. About 60% leaves of infected plant were not marketable and fresh weight of the leaves was 73.6% compared to healthy leaves. Total yield of the greenhouses infested by the disease ranged from $100{\sim}140kg$, while it was 260 kg in a non-infested greenhouse at one time harvest. Since the disease represents a threat to safe cultivation of leafy lettuce in Korea, environmentally-friend control strategies should be urgently developed.

Deep Learning Methods for Recognition of Orchard Crops' Diseases

  • Sabitov, Baratbek;Biibsunova, Saltanat;Kashkaroeva, Altyn;Biibosunov, Bolotbek
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.257-261
    • /
    • 2022
  • Diseases of agricultural plants in recent years have spread greatly across the regions of the Kyrgyz Republic and pose a serious threat to the yield of many crops. The consequences of it can greatly affect the food security for an entire country. Due to force majeure, abnormal cases in climatic conditions, the annual incomes of many farmers and agricultural producers can be destroyed locally. Along with this, the rapid detection of plant diseases also remains difficult in many parts of the regions due to the lack of necessary infrastructure. In this case, it is possible to pave the way for the diagnosis of diseases with the help of the latest achievements due to the possibilities of feedback from the farmer - developer in the formation and updating of the database of sick and healthy plants with the help of advances in computer vision, developing on the basis of machine and deep learning. Currently, model training is increasingly used already on publicly available datasets, i.e. it has become popular to build new models already on trained models. The latter is called as transfer training and is developing very quickly. Using a publicly available data set from PlantVillage, which consists of 54,306 or NewPlantVillage with a data volumed with 87,356 images of sick and healthy plant leaves collected under controlled conditions, it is possible to build a deep convolutional neural network to identify 14 types of crops and 26 diseases. At the same time, the trained model can achieve an accuracy of more than 99% on a specially selected test set.

Fusarium Wilt of Winter Daphne (Daphne odora Thunb.) Caused by Fusarium oxysporum

  • Kim, Gyoung-Hee;Hur, Jae-Seoun;Choi, Woo-Bong;Koh, Young-Jin
    • The Plant Pathology Journal
    • /
    • v.21 no.2
    • /
    • pp.102-105
    • /
    • 2005
  • Severe wilt disease epidemic was found on winter daphnes (Daphne odora Thunb.) cultivated in farmers, nurseries in Suncheon, Jeonnam in 2003. Typical symptoms appeared on the leaves of winter daphne as yellowish wilts and turned brown from the lower leaves on the same plant. Severely infected leaves were defoliated, resulting in blight of stems and eventual death of the entire plant. Black decayed vascular tissues were distinctly observed in a wilted plant. Fusarium sp. was isolated from the diseased plants repeatedly and its pathogenicity was confirmed by artificial inoculation on healthy plants. The fungus was identified as Fusarium oxysporum on the basis of the morphological and cultural characteristics on potato dextrose agar and carnation leaf agar. The optimum temperature for fungal growth was around $25{\circ}C$ and the fungal growth was inhibited by metconazole, triflumizole and trifloxystrobin on potato dextrose agar. This is the first report on the wilt disease of winter daphnes caused by F.oxysporum in Korea.

Antagonistic Potential of Fluorescent Pseudomonads and Control of Crown and Root Rot of Cucumber Caused by Phythophtora drechsleri

  • Shirzad, Akbar;Fallahzadeh-Mamaghani, Vahid;Pazhouhandeh, Maghsoud
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • In this study, 200 isolates of fluorescent pseudomonads were isolated from different fields of East and West Azarbaijan and Ardebil provinces of Iran. These bacterial isolates were screened on the basis of a dual culture assay, the presence of known antibiotic genes, and their ability to successfully colonize roots and to promote plant growth. Twelve isolates exhibited 30% or more inhibition of mycelia growth of $P.$ $drechsleri$. Genes encoding production of the antibiotics 2,4-diacetylphloroglucinol, phenazine-1-carboxylic acid, and pyoluteorin were detected in some strains but none of the strains possessed the coding gene for production of antibiotic pyrrolnitrin. In an $in$ $vitro$ test for root colonization, the population density on roots of plants treated with most of the above strains was more than 6 $\log_{10}$ CFU $g^{-1}$ roots, with a maximum of 7.99 $\log_{10}$ CFU $g^{-1}$ roots for strain 58A. Most of the strains promoted significant plant growth in comparison to non-treated controls. In green house studies, the percentage of healthy plants in pots treated with strains 58A and 8B was 90.8% and 88.7%, respectively. The difference between these treatments and treatment with the fungicide metalaxyl was not significant.

Migration and Distribution of Graft-inoculated Jujube Witches'-broom Phytoplasma within a Cantharanthus roseus Plant

  • Lee, Sang-Hun;Kim, Chul-Eung;Cha, Byeong-Jin
    • The Plant Pathology Journal
    • /
    • v.28 no.2
    • /
    • pp.191-196
    • /
    • 2012
  • Periwinkle seedlings (Cantharanthus roseus) were inoculated with jujube witches'- broom (JWB) phytoplasma via grafting to analyze the migration of JWB phytoplasmas within the host plant. The phytoplasmas were detected using nested polymerase chain reaction (PCR) and fluorescence microscopy. Fluorescence microscopy was a simple and easy method of detecting phytoplasmas; however, it was not sufficiently sensitive to detect very low phytoplasma concentrations. Therefore, the migration of JWB phytoplasma was investigated through PCR. The first migration of JWB phytoplasma from an infected tissue to healthy tissues occurred late. After grafting, the phytoplasmas moved from the inoculated twig (or scion) to the main stem, which took 28 days. Afterward, the phytoplasma migrated faster and took less than 4 days to spread into the roots from the main stem. All twigs were then successively colonized by the JWB phytoplasmas from the bottom to the top. JWB phytoplasma was detected via nested PCR in all parts of the periwinkle seedling 82 days after inoculation. Based on these results, the inoculated JWB phytoplasma appeared to migrate downward to the roots along the main stem during the early stages, and then continued to move upward, colonizing twigs along the way until they reached the apex.

Studies on the Pear Abnormal Leaf Spot Disease - 2. Identification of Causal Agent - (배나무잎 이상반점증상에 관한 연구 - 2. 원인구명 -)

  • 남기웅;김충회
    • Korean Journal Plant Pathology
    • /
    • v.11 no.3
    • /
    • pp.210-216
    • /
    • 1995
  • Alternaria spp.were predominantly isolated from the abnormal leaf spot lesions of pear cultivars Niitaka and Nijiiseiki. Alternaria isolates from the cultivar Niitaka were not pathogenic to both cultivars, but the isolates from the cultivar Nijiiseiki developed typical lesions of black leaf spots and were identified as A. kikuchiana. However, no typical abnormal leaf spot lesions were produced by the Alternaria isolates. Foliar spray of twelve different agrochemicals including lime sulfur, either alone or in combinations, with 7 times applications from April to July failed to reduced the disease development. Application of 17 different pesticides including fungicides, insecticides and herbicides currently used in pear orchards did not cause leaf injury similar to the abnormal leaf spot. Simulated acid rain of as low as pH 3.0 did not incite any leaf lesions alike the abnormal spot lesions. Mineral contents in the leaves of both cultivars did not differ significantly between the healthy leaves and those with abnormal leaf spots. When cuttings of pear tree were obtained in February from newly emerged twigs of the healthy or the diseased trees of Niitaka and planted in sand in the greenhouse, only those from the diseased trees developed typical leaf lesions of the abnormal spot. These results indicate that abnormal leaf spots are caused by unknown systemic agents in pear trees, rather than by Alternaria spp., chemical injury or acid rain.

  • PDF