DOI QR코드

DOI QR Code

Antagonistic Potential of Fluorescent Pseudomonads and Control of Crown and Root Rot of Cucumber Caused by Phythophtora drechsleri

  • Received : 2011.06.27
  • Accepted : 2011.12.12
  • Published : 2012.03.01

Abstract

In this study, 200 isolates of fluorescent pseudomonads were isolated from different fields of East and West Azarbaijan and Ardebil provinces of Iran. These bacterial isolates were screened on the basis of a dual culture assay, the presence of known antibiotic genes, and their ability to successfully colonize roots and to promote plant growth. Twelve isolates exhibited 30% or more inhibition of mycelia growth of $P.$ $drechsleri$. Genes encoding production of the antibiotics 2,4-diacetylphloroglucinol, phenazine-1-carboxylic acid, and pyoluteorin were detected in some strains but none of the strains possessed the coding gene for production of antibiotic pyrrolnitrin. In an $in$ $vitro$ test for root colonization, the population density on roots of plants treated with most of the above strains was more than 6 $\log_{10}$ CFU $g^{-1}$ roots, with a maximum of 7.99 $\log_{10}$ CFU $g^{-1}$ roots for strain 58A. Most of the strains promoted significant plant growth in comparison to non-treated controls. In green house studies, the percentage of healthy plants in pots treated with strains 58A and 8B was 90.8% and 88.7%, respectively. The difference between these treatments and treatment with the fungicide metalaxyl was not significant.

Keywords

References

  1. Ahmadzadeh, M. and Sharifi-Tehrani, A. 2009. Evaluation of fluorescent pseudomonads for plant growth promotion, antifungal activity against Rhizoctonia solani on common bean, and biocontrol potential. Biolog. Control 48:101-107. https://doi.org/10.1016/j.biocontrol.2008.10.012
  2. Ahmed Idris, H., Labuschagne, N. and Korsten, L. 2007. Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. Biol. Control 40:97-106. https://doi.org/10.1016/j.biocontrol.2006.07.017
  3. Alavi, A. and Strange, R. N. 1979. A baiting for isolating Phytophthora drechsleri, causal agent of crown rot of Cucumis species in Iran. Plant Dis. Rep. 63:1084-1086.
  4. Alavi, A. and Strange, R. N. 1982. The relative susceptibility of some cucurbits to an Iranian isolate of Phytophthora drechsleri. Plant Path. 31:221-227. https://doi.org/10.1111/j.1365-3059.1982.tb01272.x
  5. Ayers, S. H., Rupp, P. and Johnson, W. T. 1919. A study of the alkali forming bacteria in milk. U. S. Dept. Agric. Bull. 782 pp.
  6. Babadoost, M. and Islam, S. Z. 2003. Fungicide seed sreatment effects on seedling damping-off of pumpkin caused by Phytophthora capsici. Plant Dis. 87:63-68. https://doi.org/10.1094/PDIS.2003.87.1.63
  7. Bull, C. T., Weller, D. M. and Thomashow, L. S. 1991. Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2-79. Phytopathology 81:954-959. https://doi.org/10.1094/Phyto-81-954
  8. Buysens, S., Heungens, K., Poppe, J. and Hofte, M. 1996. Involvement of pyochelin and pyoverdin in uppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl. Environ. Microbiol. 62:865-871.
  9. de Souza, J. T., Arnould, C., Deulvot, C., Lemanceau, P., Gianinazzi-Pearson, V. and Raaijmakers, J. M. 2003. Effect of 2,4-diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology 93:966-975. https://doi.org/10.1094/PHYTO.2003.93.8.966
  10. Dowling, D. N. and O'Gara, F. 1994. Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol. 12:133-144. https://doi.org/10.1016/0167-7799(94)90091-4
  11. Dye, D. W. 1968. A taxonomic study of the genus Erwinia. I. the "amylovora" group. N.Z. J. Sci. 11: 590-607.
  12. Duffy, B. K. and Défago, G. 1997. Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87:1250-1257. https://doi.org/10.1094/PHYTO.1997.87.12.1250
  13. Erwin, D. C. and Ribeiro, O. K. 1996. Phytophthora capsici. Pages 262-268 in: Phytophthora Diseases World wide. American Phytopathological Society, St. Paul, MN.
  14. Expert, J. M. and Digat, B. 1995. Biocontrol of Sclerotinia wilt of sunflower by Pseudomonas fluorescens and Pseudomonas putida strains. Can J. Microbiol. 41:685-691. https://doi.org/10.1139/m95-094
  15. Fallahzadeh-Mamaghani, V., Ahmadzadeh, M. and Sharifi, R. 2009. Screening systemic resistance-inducing fluorescent pseudomonads for control of bacterial blight of cotton caused by Xanthomonas campestris pv. malvacearum. J. Plant Pathol. 91:663-670.
  16. Haas, D. and Keel, C. 2003. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 41:117-153 https://doi.org/10.1146/annurev.phyto.41.052002.095656
  17. Hagedorn, C., Gould, W. D. and Bardinelli, T. R. 1998. Rhizobacteria of cotton and their repression of seedling disease pathogens. Appl. Environ. Microb. 55:2793-2797.
  18. Handelsman, J. and Stabb, E. V. 1996. Biocontrol of soil-borne plant pathogens. Plant Cell 8:1855-1869. https://doi.org/10.1105/tpc.8.10.1855
  19. Howell, C. R. and Stipanovic R. D. 1980. Suppression of Pythium ultimum induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70:712-715. https://doi.org/10.1094/Phyto-70-712
  20. Hu, H. B., Xu, Y. Q., Cheng, F., Zhang, X. H. and Hur, B. 2005. Isolation and characterization of a new Pseudomonas strain produced both phenazine 1-carboxylic acid and pyoluteorin. J. Microbiol. Biotech. 15:86-90.
  21. Hwang, B. K. and Kim, C. H. 1995. Phytophthora blight of pepper and its control in Korea. Plant Diseas. 79:221-227. https://doi.org/10.1094/PD-79-0221
  22. Keel, C., Schnider, U., Maurhofer, M., Voisard, C., Laville, J., Burger, U., Wirthner, P., Haas, D. and Defago, G. 1992. Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol. Plant-Microbe Interact. 5:4-13. https://doi.org/10.1094/MPMI-5-004
  23. Khan, J., Ooka, J. J., Miller, S. A., Madden, L. V. and Hoitink, H. A. J. 2004. Systemic resistance induced by Trichoderma hamatum 382 in cucumber against Phytophthora crown rot and leaf blight. Plant Dis. 88:280-286. https://doi.org/10.1094/PDIS.2004.88.3.280
  24. Khateri, H. 2002. Studing the effect of some antagonistic bacteria against Phytophthora drechsleri the causal agent of cucumber root and crown rot. MSc thesis. University of Tehren, Karaj.
  25. King, E. O., Ward, M. K. and Raney, D. E. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. Lab. Clin. Med. 44:301-307.
  26. Klement, Z. 1963. Rapid detection of the pathogenicity of phytopathogenic pseudomonads. Nature 199:299-300.
  27. Kovacs, N. 1956. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178, p. 703.
  28. Kreutzer, W. A., Bodine, E. W. and Durrell, L. W. 1940. Cucurbit diseases and rot of tomato fruit caused by Phytophthora capsici. Phytopathology 30:972-976.
  29. Lamour, K. H. and Hausbeck, M. K. 2000. Mefenoxam insensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathology 90:396-400. https://doi.org/10.1094/PHYTO.2000.90.4.396
  30. Lamour, K. H. and Hausbeck, M. K. 2001. Investigating the spatiotemporal genetic structure of Phytophthora capsici in Michigan. Phytopathology 91:973-980. https://doi.org/10.1094/PHYTO.2001.91.10.973
  31. Lee, J. Y., Moon, S. S. and Hwang, B. K. 2003. Isolation and in vitro and in vivo activity against Phytophthora capsici and Colletotrichum orbiculare of phenazine-1-carboxylic acid from Pseudomonas aeruginosa strain GC-B26. Pest Manag. Sci. 59:872-882. https://doi.org/10.1002/ps.688
  32. Lifshitz, R., Kloepper, J. W., Kozlowski, M., Simonson, C., Carlson, J., Tipping, E. N. and Zaleska, I. 1987. Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can. J. Microbiol. 8:102-106
  33. Lindow, S. E. 1988. Lack of correlation of in vitro antibiosis with antagonism of ice nucleation active bacteria on leaf surfaces by non-ice nucleation active bacteria. Phytopathology 78:444-450. https://doi.org/10.1094/Phyto-78-444
  34. Liu, H., He, Y., Jiang, H., Peng, H., Huang, X., Zhang, X., Thomashow, L. S. and Xu, Y. 2007. Characterization of a Phenazine-Producing Strain Pseudomonas chlororaphis GP72 with broad-spectrum antifungal activity from green pepper rhizosphere. Curr. Microbiol. 54:302-306. https://doi.org/10.1007/s00284-006-0444-4
  35. Mavrodi, O. V., McSpadden Gardener, B. B., Mavrodi, D. V., Bonsall, R. F., Weller, D. M. and Thomashow, L. S. 2001. Genetic diversity of phlD from 2,4-diacetylphloroglucinolproducing fluorescent Pseudomonas spp. Phytopathology 91:35-43. https://doi.org/10.1094/PHYTO.2001.91.1.35
  36. McGrath, M. T. 2001. Vegetable MD online: Phytophthora blight of cucurbits. Cooperative Extension, New York State, Cornell University. Online publication.
  37. McSpadden Gardener, B. B., Schroeder, K. L., Kalloger, S. E., Raaijmakers, J. M., Thomashow, L. S. and Weller, D. M., 2000. Genotypic and phenotypic diversity of phlD containing Pseudomonas strains isolated from the rhizosphere of wheat. Appl. Environ. Microbiol. 66:1939-1946. https://doi.org/10.1128/AEM.66.5.1939-1946.2000
  38. McSpadden Gardener, B. B., Mavrodi, D. V., Thomashow, L. S. and Weller, D. M. 2001. A rapid polymerase chain reactionbased assay characterizing rhizosphere populations of 2,4-diacetylphloroglucinol producing bacteria. Phytopathology 91:44-54. https://doi.org/10.1094/PHYTO.2001.91.1.44
  39. Nazari, S. 1991. Studying the effect of some fungicides and Trichoderma harzianum on casual agent of cucumber damping off. MSc thesis. University of Tehren, Karaj. Iran.
  40. Raaijmakers, J. M., Weller, D. M. and Thomashow, L. S. 1997. Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl. Environ. Microb. 63:881-887.
  41. Reddy, M. S. Hynes, R. K. and Lazarovits, G. 1993. Relationship between invitro growth inhibition of pathogens and suppression of pre-emergence damping-off and post-emergence root rot of white bean seedlings in the greenhouse by bacteria. Can J. Microbiol. 40:113-119.
  42. Ristaino, J. B. and Johnston, S. A. 1999. Ecologically based approaches to management of Phytophthora blight on bell pepper. Plant Dis. 83:1080-1088. https://doi.org/10.1094/PDIS.1999.83.12.1080
  43. Schaad, N. W., Jones, J. B. and Chun, W. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. APS Press, MN, 373 pp.
  44. Simon, A. and Ridge, E. H. 1974. The use of ampicillin in a simplified selective medium for the isolation of fluorescent pseudomonads. J. Appl. Bacteriol. 37:459-460. https://doi.org/10.1111/j.1365-2672.1974.tb00464.x
  45. Sunish-Kumar, R., Ayyadurai, N., Pandiaraja, P., Reddy, A. V., Venkateswarlu, Y., Prakash, O. and Sakthivel, N. 2005. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J. Appl. Microbiol. 98:145-154. https://doi.org/10.1111/j.1365-2672.2004.02435.x
  46. Thomashow, L. S. and Weller, D. M. 1995. Current concepts in the use of introduced bacteria for biological disease control, p. 187-235. In G. Stacey and N. Keen (ed.), Plant-microbe interactions, vol. 1. Chapman & Hall, New York, N.Y.
  47. Thornley, M. 1. 1960. The differentiation of Pseudomonas from other Gram negative bacteria on the basis of arginine metabolism. Appl. Bacteriol. 1:37-52.
  48. Tjamos, E. C., Tsitsigiannis, D. I., Tjamos, S. E., Antoniou, P. P. and Katinakis, P. 2004. Selection and screening of endorhizosphere bacteria from solarized soils as biocontrol agents against Verticillium dahliae of solanaceous hosts. Eur. J. Plant Pathol. 110:35-44. https://doi.org/10.1023/B:EJPP.0000010132.91241.cb
  49. Turner, J. M. and Messenger, A. J. 1986. Occurrence, biochemistry and physiology of phenazine pigment production. Adv. Microb. Physiol. 27:211-275. https://doi.org/10.1016/S0065-2911(08)60306-9
  50. Wang, C., Ramette, A., Punjasamarnwong, P., Zala, M., Natsch, A., Moenne-Loccoz, Y. and Defago, G. 2001. Cosmopolitan distribution of phlD-containing dicotyledonous crop-associated biocontrol pseudomonads of worldwide origin. FEMS Microbiol. Ecology 37:105-116. https://doi.org/10.1111/j.1574-6941.2001.tb00858.x
  51. Weller, D. M., Zhang, B. X. and Cook, R. J. 1985. Application of a rapid screening test for selection of bacteria suppressive to take-all of wheat. Plant Dis. 69:710-713.
  52. Yuen, G. Y. and Schroth, M. N. 1986. Interaction of Pseudomonads fluorescens strains E6 with ornamental plants and its effect on the composition of root colonization microflora. Phytopathology 76:176-179. https://doi.org/10.1094/Phyto-76-176

Cited by

  1. Isolation and Identification of Plant Growth Promoting Rhizobacteria from Cucumber Rhizosphere and Their Effect on Plant Growth Promotion and Disease Suppression vol.6, 2016, https://doi.org/10.3389/fmicb.2015.01360
  2. Fluorescent Pseudomonads in the Phyllosphere of Wheat: Potential Antagonists Against Fungal Phytopathogens vol.72, pp.4, 2016, https://doi.org/10.1007/s00284-015-0966-8
  3. Pathogen Variation and Urea Influence Selection and Success of Streptomyces Mixtures in Biological Control vol.103, pp.1, 2013, https://doi.org/10.1094/PHYTO-06-12-0129-R
  4. Combining Trichoderma hamatum THSW13 and Pseudomonas aeruginosa BJ10–86: a synergistic chili pepper seed treatment for Phytophthora capsici infested soil vol.147, pp.1, 2017, https://doi.org/10.1007/s10658-016-0988-5
  5. Isolation and selection of Hemileia Vastatrix antagonists vol.139, pp.4, 2014, https://doi.org/10.1007/s10658-014-0430-9
  6. Plant growth promotion and suppression of Phytophthora drechsleri damping-off in cucumber by cellulase-producing Streptomyces 2017, https://doi.org/10.1007/s10526-017-9838-4
  7. Antagonistic Potential of Fluorescent Pseudomonads Colonizing Wheat Heads Against Mycotoxin Producing Alternaria and Fusaria vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.02124