• Title/Summary/Keyword: Healing Energy

Search Result 121, Processing Time 0.022 seconds

A Study on the Behavioral Affordance of Healing Environment and Concept of Sustainability - Focused on the Eco-Friendly Low-Rise Medical Facilities - (치유환경의 행태지원성과 지속가능성 개념에 관한 연구 - 저층 친환경 의료시설 사례 중심으로 -)

  • Chun, Jong-Woo;Kim, Kwang-Ho
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.4
    • /
    • pp.158-166
    • /
    • 2013
  • The purpose of this study is to suggest a direction for eco-friendly healing space design for healthcare facilities in the future. Theoretical review and case study on the concept of sustainable design, spatial expression and behavioral affordance were used as research method. Through these reviews, the 3 elements of the total healing environment -physical, psychological and social- have correspondence with elements of spatial expression; Refuge, Flow, Prospect and Void. And these are related to the eight kinds of Behavioral affordance which are subdivided into WORK&STUDY, REST, CIRCULATION, VISUAL SEQUENCE, SOCIAL EXCHANGE, REFRESHMENT, COMMUNITY and MEDITATION. And the concept of sustainable design consists of 6 principles ; Natural system, People, Place, The cycle of life, Energy & natural resources and Process. Through correlation analysis of behavioral affordance and 6 principles, the result of this study presents that the physical elements of the total healing space was mainly associated with the principles of people, place and the cycle of life. Psychological element was related to principle of natural system, human, place and process. And social element was associated with the principles of human, place and process. According to this analysis, the case study of four low-rise eco-friendly medical facilities was undertaken. Sustainability was evaluated in total healing environmental through this case study.

A study on Crack Healing of Various Glassy Polymers (part I) -theoretical modeling- (유리질 중합체의 균열 Healing에 관한 연구 (제1보) -이론 모델링-)

  • Lee, Ouk-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.1
    • /
    • pp.40-49
    • /
    • 1986
  • Crack, craze and void are common defects which may be found in the bulk of polymeric materials such as either themoplastics or thermosets. The healing phenomena, autohesion, of these defects are known to be a intrinsic material property of various polymeric materials. However, only a few experimental and theoretical investigations on crack, void and craze healing phenomena for various polymeric materials have been reported up to date [1, 2, 3]. This may be partly due to the complications of healing processes and lacking of appropriate theoretical developments. Recently, some investigators have been urged to study the healing phenomena of various polymenic materials since the significance of the use of polymer based alloys or composites has been raised in terms of specific strength and energy saving. In the earlier published reports [1, 2, 3, 4], the crack and void healing velocity, healing toughness and some other healing mechanical and physical properties were measured experimentally and compared with predicted values by utilizing a simple model such as the reptation model under some resonable assumptions. It seems, however, that the general acceptance of the proposed modeling analyses is yet open question. The crack healing processes seem to be complicate and highly dependent on the state of virgin material in terms of mechanical and physical properties. Furthermore, it is also strongly dependent on the histories of crack, craze and void development including fracture suface morphology, the shape of void and the degree of disentanglement of fibril in the craze. The rate of crack healing may be a function of environmental factors such as healing temperature, time and pressure which gives different contact configurations between two separated surfaces. It seems to be reasonable to assume that the crack healing processes may be divided in several distinguished steps like stress relaxation with molecular chain arrangement, surface contact (wetting), inter- diffusion process and com;oete healing (to obtain the original strength). In this context, it is likely that we no longer have to accept the limitation of cumulative damage theories and fatigue life if it is probable to remove the defects such as crack, craze and void and to restore the original strength of polymers or polymer based compowites by suitable choice of healing histories and methods. In this paper, we wish to present a very simple and intuitive theoretical model for the prediction of healed fracture toughness of cracked or defective polymeric components. The central idea of this investigation, thus, may be the modeling of behavior of chain molecules under healing conditions including the effects of chain scission on the healing processes. The validity of this proposed model will be studied by making comparisons between theoretically predicted values and experimentally determined results in near future and will be reported elsewhere.

  • PDF

Aging Analysis of Self Hooting MPPF Capacitor Elements (셀프힐링 금속증착 커패시터 소체의 열화 분석)

  • 곽희로;송길목;김영찬
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.73-79
    • /
    • 2003
  • This paper describes the characteristics of capacitor elements at self healing. Self healing events were forced to be created by the over-rated voltage of the capacitor elements. The self healing site was photographed by the Scanning Electron Microscope and the by-products of self healing were analyzed by the Energy Dispersive X-ray Spectrometer. Also the self healing site was analyzed by the Differential Scanning Calorimeter and the Fourier Transform Infrared Spectrometer. As a result, the main component of by-products due to the hum cut at self healing was carbon. The Fourier Transform Infrared analysis result of the self-healing specimen was similar to that of the virgin specimen, however, different from that of the specimen thermally treated at 500$^{\circ}C$. It was observed that heat flow peaks of virgin specimen were different from self-healing specimen by the Differential Scanning Calorimeter analysis.

Analysis on the National R&D Trends Related to Agro-Healing Using NTIS R&D DATA in Korea (NTIS 국가연구개발사업 정보를 활용한 치유농업 국가 R&D 동향 분석)

  • Jung, Yeo-Joo;Kim, Jeong-Eun;Ryu, Jin-Seok;Yang, Myung-Seok;Kim, Dae-Sik
    • Journal of Korean Society of Rural Planning
    • /
    • v.27 no.3
    • /
    • pp.85-92
    • /
    • 2021
  • As the paradigm of green has been expended as the core of sustainable development in Korea, agro-healing projects increasingly have been a priority at the national policy and investment area. But little is known about the current overview of national research and development(R&D) related to agro-healing. The aim of this study was generally to investigate the research trends of national R&D related to agro-healing over the past five years. Dataset were gathered from provided by National Science & Technology Information Service(NTIS), word cloud techniques were applied. The main results showed that amounts of number and funding related to agro-healing projects have been increasing. In particular, the Rural Development Administration had the highest number of research, and it was found that the Ministry of Trade, Industry and Energy have spended a lot of money on agro-healing. As a results, it is necessary to expand the scope of the field of agro-healing projects, especially at the multisectoral and intersectoral level for improving health, well-being and a sustainable future.

Effects of Ca Implantation on the Sintering and Crack Healing Behavior of High Purity $Al_2$O$_3$ Using Micro-Lithographic Technique-III: Stability of Crack-Like Pore (Ion Implantation으로 Ca를 첨가된 단결정 $Al_2$O$_3$의 Crack-Like Pore의 Healing 거동-III: Stability of Crack-Like Pore)

  • 김배연
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.887-892
    • /
    • 1999
  • The inner crack-like pore with controlled amount of Ca impurity in the high purity alumina single crystal sapphire had been created by micro-fabrication technique which includes ion implanation photo-lithography Ar ion milling and hot press technique. The crack-like pores in two-hour hot pressed specimen were extremely stable even after heat treating at 1,80$0^{\circ}C$ for 5 hours almost no healing was observed. But the crack-like pores in one-hour hot pressed specimen at 1,30$0^{\circ}C$ were healed by heat treatment and the amount of healing was increased with the heat treatment time and temperature and the amount of Ca addition. The edges of crack-like pore parallel to <1100> direction in (001) basal plane were stable but the edges normal to this direction in (00101) plane <1120> direction were unstable to facetting This means that the surface energy of alumina along the <1100> direction in (0001) basal plane in much lower than <1120> direction.

  • PDF

Sensitivity to Intergranular Corrosion According to Heat Treatment of 304L Stainless Steel (304L 스테인리스강의 열처리에 따른 입계부식민감도 연구)

  • Jang, Hyung-Min;Kim, Dong-Jin;Kim, Hong-Pyo
    • Corrosion Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.37-42
    • /
    • 2020
  • Even though 304 low-carbon (304L) stainless steel was developed to enhance the resistance to intergranular corrosion and stress corrosion cracking, it is occasionally subject to degradation in harsh environments. The degree of sensitization (DOS) of 304L stainless steel was studied as a function of sensitization using a double-loop electrochemical potentiokinetic reactivation (DL-EPR) method. Sensitizing heat treatment was performed in an Ar atmosphere at 500℃, 600℃, and 700℃, with heat treatment times varying from 0 to 96 h. DOS was measured by the ratio of the peak current density value of the forward scan to that of the reverse scan. After the EPR experiment, the specimen surface was observed by scanning electron microscopy and energy dispersive spectroscopy. The DOS of the specimens heat-treated at 600℃ increased with heat treatment times up to 48 h and then decreased due to a self healing effect. The DOS was higher in specimens heat-treated at 600℃ than those at 500℃ or 700℃. Corrosion of the sensitized specimens occurred mainly at the δ-γ phase boundary. The corrosion morphology at the δ-γ phase boundary changed with sensitizing heat-treatment conditions due to differences in chromium activity in γ austenite and δ ferrite.

Preparation and Characterization of Microorganism Fermentation Cellulose as Hydrogel Wound Dressing (미생물 발효 셀룰로오스를 이용한 상처 치료용 하이드로겔의 제조 및 특성)

  • Kim, Mi-Yeong;Lim, Youn-Mook;Lee, Jong-Dae;Song, Sung-Gi;Gwon, Hui-Jeong;Park, Jong-Seok;Nho, Young-Chang;Kim, Sung-Ho;Choi, Young-Hun;Lee, Sun-Yi
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.365-372
    • /
    • 2010
  • Irradiation has been recognized as a highly suitable tool to aid in the formation of hydrogel. The radiation process has various advantage, such as easy process control and the lack of necessity for initiators and crosslinker. In this study, the hydrogel containing the citrus fermentation gel for the wound healing were successfully synthesized. The strength of hydrogel was increased as a function of a increasing the concentration of citrus and the irradiation doses. In addition, this hydrogel have been evaluated by the cytotoxicity and animal experiment.

Design and fabrication of capsules with isotropic destruction intensity (등방 파괴 강도를 갖는 캡슐 설계 및 제작)

  • Lim, Tae-Uk;Cheng, Hao;Hu, Jie;Wang, Shu-Le;Jung, Won-Suk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.247-248
    • /
    • 2022
  • 3D printer-based self-healing capsules have been proposed to heal cracks by enabling various structural designs, repeatable fabrication, and strength analysis of the capsules. The Fusion Deposition Modeling (FDM) method was used to design, analyze, and produce new self-healing capsules that are widely used at low cost. However, PLA extruded from FDM has low interlayer adhesion energy, and thus strength varies depending on the angle of load applied to the laminated layer and the concrete structure, thereby degrading the performance of the self-healing capsule. Therefore, in this paper, the structure of the capsule manufactured by the FDM PLA method has isotropic strength was designed. In addition, the fracture strength in the x, y, and z directions of the load applied through the compression test was analyzed. As a result, it was confirmed that the newly proposed capsule design has an isotropic fracture strength of 1400% in all directions compared to the existing spherical thin-film capsule.

  • PDF

Triboelectric Energy Harvesting for Self-powered Antibacterial Applications

  • In-Yong Suh;Sang-Woo Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.213-218
    • /
    • 2023
  • Triboelectric nanogenerators (TENGs) have emerged as a highly promising energy harvesting technology capable of harnessing mechanical energy from various environmental vibrations. Their versatility in material selection and efficient conversion of mechanical energy into electric energy make them particularly attractive. TENGs can serve as a valuable technology for self-powered sensor operation in preparation for the IoT era. Additionally, they demonstrate potential for diverse applications, including energy sources for implanted medical devices (IMDs), neural therapy, and wound healing. In this review, we summarize the potential use of this universally applicable triboelectric energy harvesting technology in the disinfection and blocking of pathogens. By integrating triboelectric energy harvesting technology into human clothing, masks, and other accessories, we propose the possibility of blocking pathogens, along with technologies for removing airborne or waterborne infectious agents. Through this, we suggest that triboelectric energy harvesting technology could be an efficient alternative to existing pathogen removal technologies in the future.

High Temperature and Fatigue Strength of crack-healed Mullite/Silicon Carbide Ceramics (균열 치유된 Mullite/SiC 세라믹스의 고온강도와 피로강도)

  • Ando, K.;Chu, M.C.;Tsuji, K.;Sato, S.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.88-95
    • /
    • 2002
  • 본 연구에서는 균열 치유 거동을 가지는 소결된 Mullite/SiC의 모재, 열처리재, 균열재, 치유 균열재의 기계적 특성이 논의되었다. 반타원형 균열의 치수는 $100{\mu}m$$200{\mu}m$이다. 얻어진 결과는 다음과 같다. (a) Mullite/SiC 복합 세라믹스는 균열 치유 능력이 있었다. (b) 최적의 균열 치유 열처리 조건은 $1300^{\circ}C$, 1시간이었다. (c) 치유 가능한 최대 균열 길이는 직경 $100{\mu}m$의 반타원 균열이다. (d) 균열 치유부는 $1200^{\circ}C$이상에서 충분한 강도를 가졌고, 대부분의 시험편은 균열 치유부 이외의 영역에서 파단 하였다. (e) 공기중에서 예열처리는 본 재료의 피로강도 향상에 유용하였다.

  • PDF