• Title/Summary/Keyword: Head-neck

Search Result 4,584, Processing Time 0.035 seconds

Drinking Pattern and Nonfatal Injuries of Adults in Korea (성인에서 AUDIT와 손상의 연관성)

  • Yoo, In-Sook;Choi, Eun-Mi;Kwon, Ho-Jang;Lee, Sang-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1690-1698
    • /
    • 2012
  • As alcohol use is one of the most important risk factors for injuries, this study was intended to clarify and evaluate any relationship between drinking patterns and the incidence rates/specific characteristics of injuries in adult populations, using a widely accepted tool, the Alcohol Use Disorders Identification Test (chronic alcohol drinking behaviors measurement, hereinafter the AUDIT) developed by the World Health Organization to help to assess the behaviors in a more accurate and reliable manner. This study used the data collected from the 2009 Korea National Health and Nutrition Examination Survey (KNHANES), in which 7,511 of 7,893 adult participants aged ${\geq}19$ years answered the questions about injuries, and excluding 104 non-respondents, 6,258 of participants in the questionnaire survey of drinking patterns were finally analyzed. The incidence rates and specific characteristics of injuries as classified by the AUDIT categories (i.e., body regions, types and mechanisms) were assessed and estimated in terms of their relative risk using t-test, ANOVA, and logistic regression. SPSS 19.0 statistical package software was employed for statistical analyses. These analyses indicate that the incidence rates of overall injuries were significantly higher in male respondents than in female respondents. The risks of alcohol use related injuries were 8.3 times higher in male respondents than in female ones. Regarding educational background, high school graduates showed the highest rates in the AUDIT with significant difference from the other groups. The married group and the group of respondents having monthly income estimated at KRW 2.01 to 3 million also showed the highest rates in the AUDIT compared to the other groups, indicating statistically significant difference. Significantly increased in problematic drinkers and those with alcohol dependence, the incidence rate of injuries body regions was 0.0371 in the head/neck, and with respect to the AUDIT and the mechanisms of external causes of injuries, transport accidents ranked first, followed by slippage, others, crash and fall. In regard to the classified types of injuries, it was statistically significant in others (e.g., laceration, contusion, addiction, or penetrating wound). In conclusion, the mechanisms of external causes of injuries as well as injuries attributed to alcohol use are very important, and a strategy is required to reduce such the injuries in the manner of decreasing the frequency of drinking after motivation by professional counsellors.

A Study on the Effectiveness of the Manufacture of Compensator and Setup Position for Total Body Irradiation Using Computed Tomography-simulator's Images (전산화 단층 모의치료기(Computed Tomography Simulator)의 영상을 이용한 TBI(Total Body Irradiation) 자세 잡이 및 보상체 제작의 유용성에 관한 고찰)

  • Lee Woo-Suk;Park Seong-Ho;Yun In-Ha;Back Geum-Mun;Kim Jeong-Man;Kim Dae-Sup
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.147-153
    • /
    • 2005
  • Purpose : We should use a computed tomography-simulator for the body measure and compensator manufacture process was practiced with TBI's positioning in process and to estimate the availability.,Materials and Methods : Patient took position that lied down. and got picture through computed tomography-simulator. This picture transmitted to Somavision and measured about body measure point on the picture. Measurement was done with skin, and used the image to use measure the image about lungs. We decided thickness of compensator through value that was measured by the image. Also, We decided and confirmed position of compensator through image. Finally, We measured dosage with TLD in the treatment department.,Results : About thickness at body measure point. we could find difference of $1{\sim}2$ cm relationship general measure and image measure. General measure and image measure of body length was seen difference of $3{\sim}4$ cm. Also, we could paint first drawing of compensator through the image. The value of dose measurement used TLD on head, neck, axilla, chest(lungs inclusion), knee region were measured by $92{\sim}98%$ and abdomen, pelvis, inquinal region, feet region were measured by $102{\sim}109%$.,Conclusion : It was useful for TBI's positioning to use an image of computed tomography-simulator in the process. There was not that is difference of body thickness measure point, but measure about length was achieved definitely. Like this, manufacture of various compensator that consider body density if use image is available. Positioning of compensator could be done exactly. and produce easily without shape of compensator is courted Positioning in the treatment department could shortened overall $15\{sim}20$ minute time. and reduce compensator manufacture time about 15 minutes.

  • PDF

Research of 6 MeV Electron Dose Distribution (6 MeV Electron Therapy에서의 Electron Dose Distribution에 관한 연구)

  • Je Jae-Yong;Park Chul-Woo;Jin Sung-Jin;Park Eun-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.161-166
    • /
    • 2005
  • Purpose : Electron is used for the treatment of skin cancer, breast cancer, and head and neck cancer in clinic. Our study is performed to check the isodose distribution in source surface distance(SSD)and source bolus distance(SBD)setup, nipple influence to isodose distribution of electron, junctional area isodose variation of photon and electron field. Materials and Methods : The electron dose distribution measures the diameter for 20 cm hemisphere paraffin phantom 2 made. It inserted the film between 2 paraffin phantom and it investigated it got radiation and dose distribution curve. Results : The 8% of isodose difference is with the surface distance(SSD)and source bolus distance(SBD)setup. The electon when the nipple exists inside the field, as nipple size it cuts the bolus and when it puts out and there is a possibility of getting the dose distribution which is homogeneous. When in the junction of electron and photon it uses the bolus it uses in the electron field whole, there is a possibility of getting the dose distribution which is homogeneous. Conclusion : The dose distribution decrease from the SBD setup. To reduce the influence of nipple, corresponding volume of bolus should be removed. And bolus covering all the electron field reduced hot and cold spot of junctional area of photon. In the future becomes the research which sees an effective electron therapy.

  • PDF

Patient Specific Quality Assurance of IMRT: Quantitative Approach Using Film Dosimetry and Optimization (강도변조방사선치료의 환자별 정도관리: 필름 선량계 및 최적화법을 이용한 정량적 접근)

  • Shin Kyung Hwan;Park Sung-Yong;Park Dong Hyun;Shin Dongho;Park Dahl;Kim Tae Hyun;Pyo Hongryull;Kim Joo-Young;Kim Dae Yong;Cho Kwan Ho;Huh Sun Nyung;Kim Il Han;Park Charn Il
    • Radiation Oncology Journal
    • /
    • v.23 no.3
    • /
    • pp.176-185
    • /
    • 2005
  • Purpose: Film dosimetry as a part of patient specific intensity modulated radiation therapy quality assurance (IMRT QA) was peformed to develop a new optimization method of film isocenter offset and to then suggest new quantitative criteria for film dosimetry. Materials and Methods: Film dosimetry was peformed on 14 IMRT patients with head and neck cancers. An optimization method for obtaining the local minimum was developed to adjust for the error in the film isocenter offset, which is the largest part of the systemic errors. Results: The adjust value of the film isocenter offset under optimization was 1 mm in 12 patients, while only two patients showed 2 mm translation. The means of absolute average dose difference before and after optimization were 2.36 and $1.56\%$, respectively, and the mean ratios over a $5\%$ tolerance were 9.67 and $2.88\%$. After optimization, the differences in the dose decreased dramatically. A low dose range cutoff (L-Cutoff) has been suggested for clinical application. New quantitative criteria of a ratio of over a $5\%$, but less than $10\%$ tolerance, and for an absolute average dose difference less than $3\%$ have been suggested for the verification of film dosimetry. Conclusion: The new optimization method was effective in adjusting for the film dosimetry error, and the newly quantitative criteria suggested in this research are believed to be sufficiently accurate and clinically useful.

Efficiency Study of 2D Diode Array Detector for IMRT Quality Assurance (2D 어레이 다이오드 검출기를 통한 IMRT 계산선량의 정확성 평가 및 효용성 연구)

  • Kim, Tae-Ho;Oh, Seung-Jong;Kim, Min-Joo;Jung, Won-Gyun;Chung, Jin-Beom;Kim, Jae-Sung;Kim, Si-Yong;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.22 no.2
    • /
    • pp.61-66
    • /
    • 2011
  • In this study, we evaluated the effect of grid size on dose calculation accuracy using 2 head & neck and 2 prostate IMRT cases and based on this study's findings, we also evaluated the efficiency of a 2D diode array detector for IMRT quality assurance. Dose distributions of four IMRT plan data were calculated at four calculation grid sizes (1.25, 2.5, 5, and 10 mm) and the calculated dose distributions were compared with measured dose distributions using 2D diode array detector. Although there was no obvious difference in pass rate of gamma analysis with 3 mm/3% acceptance criteria for the others except 10 mm grid size, we found that the pass rates of 2.5, 5 and 10 mm grid size were decreased 5%, 20% and 31.53% respectively according to the application of the fine acceptance criteria, 3 mm/3%, 2 mm/2% and 1 mm/1%. The calculation time were about 11.5 min, 4.77 min, 2.95 min, and 11.5 min at 1.25, 2.5, 5, and 10 mm, respectively and as the grid size increased to double, the calculation time decreased about one-half. The grid size effect was observed more clearly in the high gradient area than the low gradient area. In conclusion, 2.5 mm grid size is considered acceptable for most IMRT plans but at least in the high gradient area, 1.25 mm grid size is required to accurately predict the dose distribution. These results are exactly same as the precious studies' results and theory. So we confirmed that 2D array diode detector was suitable for the IMRT QA.

Improvement of the Dose Calculation Accuracy Using MVCBCT Image Processing (Megavoltage Cone-Beam CT 영상의 변환을 이용한 선량 계산의 정확성 향상)

  • Kim, Min-Joo;Cho, Woong;Kang, Young-Nam;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.62-69
    • /
    • 2012
  • The dose re-calculation process using Megavoltage cone-beam CT images is inevitable process to perform the Adaptive Radiation Therapy (ART). The purpose of this study is to improve dose re-calculation accuracy using MVCBCT images by applying intensity calibration method and three dimensional rigid body transform and filtering process. The three dimensional rigid body transform and Gaussian smoothing filtering process to MVCBCT Rando phantom images was applied to reduce image orientation error and the noise of the MVCBCT images. Then, to obtain the predefined modification level for intensity calibration, the cheese phantom images from kilo-voltage CT (kV CT), MVCBCT was acquired. From these cheese phantom images, the calibration table for MVCBCT images was defined from the relationship between Hounsfield Units (HUs) of kV CT and MVCBCT images at the same electron density plugs. The intensity of MVCBCT images from Rando phantom was calibrated using the predefined modification level as discussed above to have the intensity of the kV CT images to make the two images have the same intensity range as if they were obtained from the same modality. Finally, the dose calculation using kV CT, MVCBCT with/without intensity calibration was applied using radiation treatment planning system. As a result, the percentage difference of dose distributions between dose calculation based on kVCT and MVCBCT with intensity calibration was reduced comparing to the percentage difference of dose distribution between dose calculation based on kVCT and MVCBCT without intensity calibration. For head and neck, lung images, the percentage difference between kV CT and non-calibrated MVCBCT images was 1.08%, 2.44%, respectively. In summary, our method has quantitatively improved the accuracy of dose calculation and could be a useful solution to enhance the dose calculation accuracy using MVCBCT images.

Intensity Modulated Radiation Therapy Commissioning and Quality Assurance: Implementation of AAPM TG119 (세기조절방사선치료(IMRT)의 Commissioning 및 정도관리: AAPM TG119 적용)

  • Ahn, Woo-Sang;Cho, Byung-Chul
    • Progress in Medical Physics
    • /
    • v.22 no.2
    • /
    • pp.99-105
    • /
    • 2011
  • The purpose of this study is to evaluate the accuracy of IMRT in our clinic from based on TG119 procedure and establish action level. Five IMRT test cases were described in TG119: multi-target, head&neck, prostate, and two C-shapes (easy&hard). There were used and delivered to water-equivalent solid phantom for IMRT. Absolute dose for points in target and OAR was measured by using an ion chamber (CC13, IBA). EBT2 film was utilized to compare the measured two-dimensional dose distribution with the calculated one by treatment planning system. All collected data were analyzed using the TG119 specifications to determine the confidence limit. The mean of relative error (%) between measured and calculated value was $1.2{\pm}1.1%$ and $1.2{\pm}0.7%$ for target and OAR, respectively. The resulting confidence limits were 3.4% and 2.6%. In EBT2 film dosimetry, the average percentage of points passing the gamma criteria (3%/3 mm) was $97.7{\pm}0.8%$. Confidence limit values determined by EBT2 film analysis was 3.9%. This study has focused on IMRT commissioning and quality assurance based on TG119 guideline. It is concluded that action level were ${\pm}4%$ and ${\pm}3%$ for target and OAR and 97% for film measurement, respectively. It is expected that TG119-based procedure can be used as reference to evaluate the accuracy of IMRT for each institution.

($P16^{ink4}$ Methylation in Squamous Cell Carcinoma of the Oral Cavity. (구강 편평세포암종에서 $P16^{ink4}$ 유전자의 Methylation에 대한 연구)

  • Kang, Gin-Won;Kim, Kyung-Wook;Lyu, Jin-Woo;Kim, Chang-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.22 no.2
    • /
    • pp.164-173
    • /
    • 2000
  • The p16 protein is a cyclin dependent kinase inhibitor that inhibits cell cycle progression from $G_1$ phase to S phase in cell cycle. Many p16 gene mutations have been noted in many cancer-cell lines and in some primary cancers, and alterations of p16 gene function by DNA methylation have been noticed in various kinds of cancer tissues and cell-lines. There have been a large body of literature has accumulated indicating that abnormal patterns of DNA methylation (both hypomethylation and hypermethylation) occur in a wide variety of human neoplasma and that these aberrations of DNA methylation may play an important epigenetic role in the development and progression of neoplasia. DNA methylation is a part of the inheritable epigenetic system that influences expression or silencing of genes necessary for normal differentiation and proliferation. Gene activity may be silenced by methylation of up steream regulatory regions. Reactivation is associated with demethylation. Although evidence or a high incidence of p16 alterations in a variety of cell lines and primary tumors has been reported, that has been contested by other investigators. The precise mechanisms by which abnormal methylation might contribute to carcinogenesis are still not fully elucidated, but conceivably could involve the modulation of oncogene and other important regulatory gene expression, in addition to creating areas of genetic instability, thus predisposing to mutational events causing neoplasia. There have been many variable results of studies of head and neck squamous cell carcinoma(HNSCC). This investigation was studied on 13 primary HNSCC for p16 gene status by protein expression in immunohistochemistry, and DNA genetic/epigenetic analyzed to determine the incidence, the mechanisms, and the potential biological significance of its Inactivation. As methylation detection method of p16 gene, the methylation specific PCR(MSP) is sensitive and specific for methylation of any block of CpG sites in a CpG islands using bisulfite-modified DNA. The genomic DNA is modified by treatment with sodium bisulfate, which converts all unmethylated cytosines to uracil(thymidine). The primers designed for MSP were chosen for regions containing frequent cytosines (to distinguish unmodified from modified DNA), and CpG pairs near the 5' end of the primers (to provide maximal discrimination in the PCR between methylated and unmethylated DNA). The two strands of DNA are no longer complementary after bisulfite treatment, primers can be designed for either modified strand. In this study, 13 paraffin embedded block tissues were used, so the fragment of DNA to be amplified was intentionally small, to allow the assessment of methylation pattern in a limited region and to facilitate the application of this technique to samlples. In this 13 primary HNSCC tissues, there was no methylation of p16 promoter gene (detected by MSP and automatic sequencing). The p16 protein-specific immunohistochemical staining was performed on 13 paraffin embedded primary HNSCC tissue samples. Twelve cases among the 13 showed altered expression of p16 proteins (negative expression). In this study, The author suggested that low expression of p16 protein may play an important role in human HNSCC, and this study suggested that many kinds of genetic mechanisms including DNA methylation may play the role in carcinogenesis.

  • PDF

Formulation of a reference coordinate system of three-dimensional head & neck images: Part II. Reproducibility of the horizontal reference plane and midsagittal plane (3차원 두부영상의 기준좌표계 설정을 위한 연구: II부 수평기준면과 정중시상면의 재현성)

  • Park, Jae-Woo;Kim, Nam-Kug;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.35 no.6 s.113
    • /
    • pp.475-484
    • /
    • 2005
  • This study was performed to investigate the reproducibility of the horizontal and midsagittal planes, and to suggest a stable coordinate system for three-dimensional (3D) cephalometric analysis. Eighteen CT scans were taken and the coordinate system was established using 7 reference points marked by a volume model, with no more than 4 points on the same plane. The 3D landmarks were selected on V works (Cybermed Inc., Seoul, Korea), then exported to V surgery (Cybermed Inc., Seoul, Korea) to calculate the coordinate values. All the landmarks were taken twice with a lapse of 2 weeks. The horizontal and midsagittal planes were constructed and its reproducibility was evaluated. There was no significant difference in the reproducibility of the horizontal reference planes, But, FH planes were more reproducible than other horizontal planes. FH planes showed no difference between the planes constructed with 3 out of 4 points. The angle of intersection made by 2 FH planes, composed of both Po and one Or showed less than $1^{\circ}$ difference. This was identical when 2 FH planes were composed of both Or and one Po. But, the latter cases showed a significantly smaller error. The reproducibility of the midsagittal plane was reliable with an error range of 0.61 to $1.93^{\circ}$ except for 5 establishments (FMS-Nc, Na-Rh, Na-ANS, Rh-ANS, and FR-PNS). The 3D coordinate system may be constructed with 3 planes; the horizontal plane constructed by both Po and right Or; the midsagittal plane perpendicular to the horizontal plane, including the midpoint of the Foramen Spinosum and Nc; and the coronal plane perpendicular to the horizontal and midsagittal planes, including point clinoidale, or sella, or PNS.

Development of Video Image-Guided Setup (VIGS) System for Tomotherapy: Preliminary Study (단층치료용 비디오 영상기반 셋업 장치의 개발: 예비연구)

  • Kim, Jin Sung;Ju, Sang Gyu;Hong, Chae Seon;Jeong, Jaewon;Son, Kihong;Shin, Jung Suk;Shin, Eunheak;Ahn, Sung Hwan;Han, Youngyih;Choi, Doo Ho
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.85-91
    • /
    • 2013
  • At present, megavoltage computed tomography (MVCT) is the only method used to correct the position of tomotherapy patients. MVCT produces extra radiation, in addition to the radiation used for treatment, and repositioning also takes up much of the total treatment time. To address these issues, we suggest the use of a video image-guided setup (VIGS) system for correcting the position of tomotherapy patients. We developed an in-house program to correct the exact position of patients using two orthogonal images obtained from two video cameras installed at $90^{\circ}$ and fastened inside the tomotherapy gantry. The system is programmed to make automatic registration possible with the use of edge detection of the user-defined region of interest (ROI). A head-and-neck patient is then simulated using a humanoid phantom. After taking the computed tomography (CT) image, tomotherapy planning is performed. To mimic a clinical treatment course, we used an immobilization device to position the phantom on the tomotherapy couch and, using MVCT, corrected its position to match the one captured when the treatment was planned. Video images of the corrected position were used as reference images for the VIGS system. First, the position was repeatedly corrected 10 times using MVCT, and based on the saved reference video image, the patient position was then corrected 10 times using the VIGS method. Thereafter, the results of the two correction methods were compared. The results demonstrated that patient positioning using a video-imaging method ($41.7{\pm}11.2$ seconds) significantly reduces the overall time of the MVCT method ($420{\pm}6$ seconds) (p<0.05). However, there was no meaningful difference in accuracy between the two methods (x=0.11 mm, y=0.27 mm, z=0.58 mm, p>0.05). Because VIGS provides a more accurate result and reduces the required time, compared with the MVCT method, it is expected to manage the overall tomotherapy treatment process more efficiently.