이 논문은 방향성 2차원 타원형 필터(Multiple Oriented 2D Elliptical Filters;MO2DEFs)를 사용하여 스테레오 영상으로부터 포즈에 강인한 사람 검출을 제안한다. 기존의 물체 지향 크기 적응 필터(Object Oriented Scale Adaptive Filter;OOSAF)는 정면을 보고 있는 사람만을 검출하는 단점을 지니고 있는데 반해 제안한 방향성 2차원 타원형 필터는 사람의 크기나 포즈에 관계없이 사람을 검출하고 추적한다. 2D 공간-깊이 히스토그램에 특정 각도로 향하는 4개의 2차원 타원형 필터들을 적용하고, 필터링 된 히스토그램에서 임계값을 통해서 사람을 검출한 다음, MO2D2EFs 중 승적 결과가 가장 큰 2차원 타원형 필터의 방향을 사람의 방향으로 판단한다. 사람 후보들은 얼굴을 검출하거나 검출된 사람의 선택된 방향의 머리-어께 형태를 정합함으로서 검증한다. 실험 결과는 (1) 포즈 각도 예측의 정확도는 약 88%이고, (2) 제안한 MO2DEFs를 사용한 사람 검출의 성능이 OOSAF를 사용한 사람 검출의 성능보다 $15{\sim}20%$만큼 향상되었으며, 특히 정면이 아닌 사람의 경우에 더 향상이 있었다.
얼굴 검출은 디지털화 된 임의의 정지 영상 혹은 연속된 영상으로부터 얼굴 존재유무를 판단하고, 얼굴이 존재할 경우 영상 내 얼굴의 위치, 방향, 크기 등을 알아내는 기술로 정의된다. 이러한 얼굴 검출은 얼굴 인식이나 표정인식, 헤드 제스쳐 등의 기초 기술로서해당 시스템의 성능에 매우 중요한 변수 중에 하나이다. 그러나 영상 내의 얼굴은 표정, 포즈, 크기, 빛의 방향 및 밝기, 안경, 수염 등의 환경적 변화로 인해 얼굴 모양이 다양해지므로 정확하고 빠른 검출이 어렵다. 따라서 본 논문에서는 오류-역전파 신경망을 사용하여 몇가지 환경적 조건을 극복한 정확하고 빠른 얼굴 검출 방법을 제안한다. 제안된 방법은 표정과 포즈, 배경에 무관하게 얼굴을 검출하면서도 빠른 검출이 가능하다. 이를 위해 신경망을 이용하여 얼굴 검출을 수행하고, 검색 영역의 축소와 신경망 계산 시간의 단축으로 검출 응답 시간을 빠르게 하였다. 검색 영역의 축소는 영상 내 피부색 영역의 분할과 차영상을 이용하였고, 주성분 분석을 통해 신경망의 입력 백터를 축소시킴으로써 신경망 수행 시간과 학습 시간을 단축시켰다. 또, 추출된 얼굴 영상에서 포즈를 추정하고 눈 영역을 검출함으로써 얼굴 정보의 사용에 있어 보다 많은 정보를 추출할 수 있도록 하였다. 얼굴 검출 실험은 마할라노비스 거리를 사용하여 검출된 영상의 얼굴 여부를 판정하고, 성공률과 시간을 측정하였다. 정지 영상과 동영상에서 모두 실험하였으며, 피부색 영역의 분할을 사용할 경우 입력 영상의 칼라 설정의 유무에 다른 검출 성공률의 차를 보였다. 포즈 실험도 같은 조건에서 수행되었으며, 눈 영역의 검출은 안경의 유무에 다른 실험 결과를 보였다. 실험 결과 실시간 시스템에 사용 가능한 수준의 검색률과 검색 시간을 보였다.
낙상 판단을 위한 최근 발표되는 연구는 RNN(Recurrent Neural Network)을 이용한 낙상 동작 특징 분석과 동작 분류에 집중되어 있다. 웨어러블 센서를 기반으로 한 접근 방식은 높은 탐지율을 제공하나 사용자의 착용 불편으로 보편화 되지 못했고 최근 영상이나 이미지 기반에 딥러닝 접근방식을 이용한 낙상 감지방법이 소개 되었다. 본 논문은 2D RGB 저가 카메라에서 얻은 영상을 PoseNet을 이용해 추출한 인체 골격 키포인트(Keypoints) 정보로 머리와 어깨의 키포인트들의 위치와 위치 변화 가속도를 추정함으로써 낙상 판단의 정확도를 높이기 위한 감지 방법을 연구하였다. 특히 낙상 후 자세 특징 추출을 기반으로 Convolutional Neural Networks 중 Gated Recurrent Unit 기법을 사용하는 비전 기반 낙상 감지 솔루션을 제안한다. 인체 골격 특징 추출을 위해 공개 데이터 세트를 사용하였고, 동작분류 정확도를 높이는 기법으로 코, 좌우 눈 그리고 양쪽 귀를 포함하는 머리와 어깨를 하나의 세그먼트로 하는 특징 추출 방법을 적용해, 세그먼트의 하강 속도와 17개의 인체 골격 키포인트가 구성하는 바운딩 박스(Bounding Box)의 높이 대 폭의 비율을 융합하여 실험을 하였다. 제안한 방법은 기존 원시골격 데이터 사용 기법보다 낙상 탐지에 보다 효과적이며 실험환경에서 약 99.8%의 성공률을 보였다.
두경부 관통성 외상의 기본적 처치는 먼저 초기 단계에서 환자의 정확한 병력 및 이학 검사, 호흡 억제 유무 평가, 중대한 출혈 유무의 평가 등을 시행한다. 중대한 출혈의 평가는 외부 출혈 유무, 급속히 커지는 혈종 유무, 혈류역학적으로 불안정한 생징후를 보이는 경우, 맥박 소실, 저혈량성 쇼크의 소견, 혈종격동이나 혈흉 소견이 있는 경우 등이다. 이러한 경우 즉각적인 외과적 처치를 시행해야 한다. 중대한 출혈의 소견을 보이지는 않지만 혈관 손상이 의심되거나 가능성이 높다고 생각되는 경우로는 혈류 잡음, 삽입 이물질이 큰 혈관에 근접 위치한 경우, 맥박 소실이나 중추 신경학적 문제가 발생한 경우 등이 해당된다. 이때는 혈관조영술과 CT촬영을 시행한 후 보존적으로 관찰을 할지 외과적 처치를 시행할지를 결정한다. 이때도 외과적 처치가 필요한 경우 지체없이 시행한다. 또한 두경부 이몰 삽입에 의해 환자가 자신의 생명에 심각한 위협을 받았다고 느끼기때문에 정신적인 충격을 해소해 주어야 한다.
Nowdays, many people suffer from the neck pain due to forward head posture(FHP) and text neck(TN). To assess the severity of the FHP and TN the craniovertebral angle(CVA) is used in clinincs. However, it is difficult to monitor the neck posture using the CVA in daily life. We propose a new method using the cervical flexion angle(CFA) obtained from a wearable sensor to monitor neck posture in daily life. 15 participants were requested to pose FHP and TN. The CFA from the wearable sensor was compared with the CVA observed from a 3D motion camera system to analyze their correlation. The determination coefficients between CFA and CVA were 0.80 in TN and 0.57 in FHP, and 0.69 in TN and FHP. From the monitoring the neck posture while using laptop computer for 20 minutes, this wearable sensor can estimate the CVA with the mean squared error of 2.1 degree.
본 연구에서는 자동차 사고나 뇌졸중 둥에 의해 경추 이하의 마비나 손, 발 등의 움직임이 자유롭지 못한 사람들의 컴퓨터 사용을 돕고자 손이나 발을 이용하지 않고 머리의 움직임과 눈의 깜박임만으로 컴퓨터 마우스 제어가 가능한 장치를 제안하였다. 마우스의 위치는 각속도 센서를 이용하여 머리의 움직임으로 추정하고, 눈 깜빡임에 의한 클릭과 더블 클릭은 광센서의 시야를 방해하지 않는 위치에 장착하여 커 클위치와 이벤트를 검출하였다. 제안한 마우스의 공간 이동 능력과 이벤트 검출을 비교한 실험에서는 좌우, 상하 이동은 기존 마우스와 비교하여 속도 면에서는 큰 차이는 없었으나, 정확도가 조금 떨어지는 이유로 인하여 정확한 위치로 이동시키는데 소요시간이 3$\sim$4배 정도 더 필요하였다. 데드 존을 갖는 비선형 상대 좌표계 방식을 이용하여 주기적으로 적분 에러를 제거해야 하는 문제를 해결하였고, 이동 거리와 속도를 함께 고려하여 직관적인 마우스 포인터 제어가 가능하도록 하였다. 주변광의 영향을 최소화하도록 광원 제어 회로를 설계하여 외부 광원의 변화에도 마우스 이벤트 검출이 영향을 받지 않았다.
본 연구에서는 기존의 동영상 합성 네트워크에 스타일 합성 네트워크를 접목시켜 동영상에 대한 스타일 합성의 한계점을 극복하고자 한다. 본 논문의 네트워크에서는 동영상 합성을 위해 스타일갠 학습을 통한 스타일 합성과 동영상 합성 네트워크를 통해 스타일 합성된 비디오를 생성하기 위해 네트워크를 학습시킨다. 인물의 시선이나 표정 등이 안정적으로 전이되기 어려운 점을 개선하기 위해 3차원 얼굴 복원기술을 적용하여 3차원 얼굴 정보를 이용하여 머리의 포즈와 시선, 표정 등의 중요한 특징을 제어한다. 더불어, 헤드투헤드++ 네트워크의 역동성, 입 모양, 이미지, 시선 처리에 대한 판별기를 각각 학습시켜 개연성과 일관성이 더욱 유지되는 안정적인 스타일 합성 비디오를 생성할 수 있다. 페이스 포렌식 데이터셋과 메트로폴리탄 얼굴 데이터셋을 이용하여 대상 얼굴의 일관된 움직임을 유지하면서 대상 비디오로 변환하여, 자기 얼굴에 대한 3차원 얼굴 정보를 이용한 비디오 합성을 통해 자연스러운 데이터를 생성하여 성능을 증가시킴을 확인했다.
본 논문에서는 다중 지역 이진 패턴(Multi-scale Bock LBP, MB-LBP) 특징과 랜덤 포레스트에 기반한 새로운 기법의 머리 방향 분류 기법을 제안한다. 제안 기법에서는 occlusion 과 조명의 변화에 강인한 분류 정확도를 얻기 위해서 랜덤화된 트리를 학습하는 것을 목표로 한다. 우선, 얼굴 이미지로부터 많은 MB-LBP 특징을 추출하고, 얼굴 영상들을 랜덤하게 입력하고 MB-LBP 크기 파라미터와 같은 랜덤 특징과 블록 좌표들을 사용하여 트리를 생성한다. 게다가 각 노드에서 정보 이득을 최대화 하는 트리의 내부 노드를 생성하기 위해서 uniform LBP 의 특성을 고려한 분할 함수를 개발한다. 랜덤화된 트리는 랜덤 포레스트에 포함되어 있으며 마지막 결정단계에서 Maximum-A-Posteriori criterion 으로 최종 결정을 한다. 실험 결과는 제안 기법이 다양한 조명, 자세, 표현, occlusion 상황에서 기존의 방법보다 개선된 성능으로 머리 방향을 분류 할 수 있음을 보여준다.
In this paper, we propose a detection method for facial features in color images with various backgrounds and face poses. To begin with, the proposed method extracts face candidacy region from images with various backgrounds, which have skin-tone color and complex objects, via the color and edge information of face. And then, by using the elliptical shape property of face, we correct a rotation, scale, and tilt of face region caused by various poses of head. Finally, we verify the face using features of face and detect facial features. In our experimental results, it is shown that accuracy of detection is high and the proposed method can be used in pose-invariant face recognition system effectively
한국지능정보시스템학회 2000년도 춘계정기학술대회 e-Business를 위한 지능형 정보기술 / 한국지능정보시스템학회
/
pp.463-468
/
2000
본 논문에서는 얼굴의 9가지 상태를 인식하고 이를 상태 시퀀스로 생성한 후, 오토마타 기법을 적용하여 13가지(준비, 상측, 하측, 좌측, 우측, 전진, 후퇴, 좌 윙크, 우 윙크, 좌 더블 윙크, 우 더블 윙크, 긍정, 부정) 헤드 제스처를 인식하는 방법을 제안한다. 얼굴 영역을 추출하는 방법에서는 최적의 얼굴색 정보와 적응적 움직임 정보를 이용하여 얼굴 영역을 추출한다. 눈의 후보 영역을 추출하는 방법에서는 소벨 연산자와 투영 기법을 이용한다. 이 때 눈의 후보들을 제거하기 위하여 눈의 기하학적 정보와 눈은 쌍으로 존재한다는 정보를 이용한다. 얼굴의 상태를 인식하기 위해서는 계층적인 특징분석 방법을 사용한다. 13가지 헤드 제스처는 얼굴 상태 인식의 처리에서 생성된 상태 시퀀스를 이용한 오토마타 기법에 의해 인식된다. 실험 결과, 93.3%의 헤드제스처 인식률을 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.