• Title/Summary/Keyword: Head phantom

Search Result 282, Processing Time 0.023 seconds

Development of A Fractionated Stereotactic Radiotherapy System (분할 정위방사선 치료 시스템 개발 연구)

  • 이동한;지영훈;이동훈;조철구;김미숙;유형준;류성렬
    • Progress in Medical Physics
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2002
  • We invented the newly developed Fractionated Stereotactic Radiotherapy(F.S.R.T) system using combined techniques of couch mounting and pedestal mounting system. Head fixation frame consists of a milled alluminium alloy(duralumin) and is placed to the couch. This frame immobilized patient head using the dental bite, 3.2 mm frontal and occipital thermoplastic mask. To evaluate the coordinate of target isocenter, Brown-Revert-Walls C.T localizer can be attached to this frame. And also, we developed the frame mounting system by developing the modification of pedestal mounting system. This system is fixed to couch floor and can be used to evaluate the isocenteric accuracy of gantry, couch and collimator in Q.A procedure. In order to measure the relocation accuracy, the acrylic phantom and the accurate pointers have been made. The repositioning of the targets in the phantom were estimated by comparing C.T coordinates and E.C.L portal films taken with anterior-posterior and right-left direction. From the results of experiments, the average distance errors between the target isocenter and its mean position were 0.71$\pm$0.19 for lateral, 0.45$\pm$0.15 for inferior-superior, 0.63$\pm$0.18 for anterior-posterior. And the maximum distance error was less than 1.3 mm. The new head fixation frame and frame mounting system were non-invasive, accurately relocatable, easy to use, very light and well tolerable by the results of phantom tests. The major advantage of using this frame mounting system is complete access to any point in the Patients cranium especially posterior direction

  • PDF

Enhancing CT Image Quality Using Conditional Generative Adversarial Networks for Applying Post-mortem Computed Tomography in Forensic Pathology: A Phantom Study (사후전산화단층촬영의 법의병리학 분야 활용을 위한 조건부 적대적 생성 신경망을 이용한 CT 영상의 해상도 개선: 팬텀 연구)

  • Yebin Yoon;Jinhaeng Heo;Yeji Kim;Hyejin Jo;Yongsu Yoon
    • Journal of radiological science and technology
    • /
    • v.46 no.4
    • /
    • pp.315-323
    • /
    • 2023
  • Post-mortem computed tomography (PMCT) is commonly employed in the field of forensic pathology. PMCT was mainly performed using a whole-body scan with a wide field of view (FOV), which lead to a decrease in spatial resolution due to the increased pixel size. This study aims to evaluate the potential for developing a super-resolution model based on conditional generative adversarial networks (CGAN) to enhance the image quality of CT. 1761 low-resolution images were obtained using a whole-body scan with a wide FOV of the head phantom, and 341 high-resolution images were obtained using the appropriate FOV for the head phantom. Of the 150 paired images in the total dataset, which were divided into training set (96 paired images) and validation set (54 paired images). Data augmentation was perform to improve the effectiveness of training by implementing rotations and flips. To evaluate the performance of the proposed model, we used the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) and Deep Image Structure and Texture Similarity (DISTS). Obtained the PSNR, SSIM, and DISTS values of the entire image and the Medial orbital wall, the zygomatic arch, and the temporal bone, where fractures often occur during head trauma. The proposed method demonstrated improvements in values of PSNR by 13.14%, SSIM by 13.10% and DISTS by 45.45% when compared to low-resolution images. The image quality of the three areas where fractures commonly occur during head trauma has also improved compared to low-resolution images.

The Dependence of CT Scanning Parameters on CT Number to Physical Density Conversion for CT Image Based Radiation Treatment Planning System (CT 영상기반 방사선치료계획시스템을 위한 CT수 대 물리적 밀도 변환에 관한 CT 스캐닝 매개변수의 의존성)

  • Baek, Min Gyu;Kim, Jong Eon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.501-508
    • /
    • 2017
  • The dependence of CT scanning parameters on the CT number to physical density conversion from the CT image of CT and CBCT electron density phantom acquired by the CT scanner using in radiotherapy were analyzed by experiment. The CT numbers were independent of the tube current product exposure time, slice thickness, filter of image reconstruction, field of view and volume of phantom. But the CT numbers were dependent on the tube voltage and cross section of phantom. As a result, for physical density range above 0, the maximum CT number difference observed at the tube voltage between 90 and 120 kVp was 27%, and the maximum CT number difference observed between CT body and head electron density phantom was 15%.

Comparative Analysis of Cartesian Trajectory and MultiVane Trajectory Using ACR Phantom in MRI : Using Image Intensity Uniformity Test and Low-contrast Object Detectability Test (ACR 팬텀을 이용한 Cartesian Trajectory와 MultiVane Trajectory의 비교분석 : 영상강도 균질성과 저대조도 검체 검출률 test를 사용하여)

  • Nam, Soon-Kwon;Choi, Joon-Ho
    • Journal of radiological science and technology
    • /
    • v.42 no.1
    • /
    • pp.39-46
    • /
    • 2019
  • This study conducted a comparative analysis of differences between cartesian trajectory in a linear rectangular coordinate system and MultiVane trajectory in a nonlinear rectangular coordinate system axial T1 and axial T2 images using an American College of Radiology(ACR) phantom. The phantom was placed at the center of the head coil and the top-to-bottom and left-to-right levels were adjusted by using a level. The experiment was performed according to the Phantom Test Guidance provided by the ACR, and sagittal localizer images were obtained. As shown in Figure 2, slices # 1 and # 11 were scanned after placing them at the center of a $45^{\circ}$ wedge shape, and a total of 11 slices were obtained. According to the evaluation results, the image intensity uniformity(IIU) was 93.34% for the cartesian trajectory, and 93.19% for the MultiVane trajectory, both of which fall under the normal range in the axial T1 image. The IIU for the cartesian trajectory was 0.15% higher than that for the MultiVane trajectory. In axial T2, the IIU was 96.44% for the cartesian trajectory, and 95.97% for the MultiVane trajectory, which fall under the normal range. The IIU for the cartesian trajectory was by 0.47% higher than that for the MultiVane trajectory. As a result, the cartesian technique was superior to the MultiVane technique in terms of the high-contrast spatial resolution, image intensity uniformity, and low-contrast object detectability.

Accuracy evaluation of treatment plan according to CT scan range in Head and Neck Tomotherapy (두경부 토모테라피 치료 시 CT scan range에 따른 치료계획의 정확성 평가)

  • Kwon, Dong Yeol;Kim, Jin Man;Chae, Moon Ki;Park, Tae Yang;Seo, Sung Gook;Kim, Jong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.2
    • /
    • pp.13-24
    • /
    • 2019
  • Purpose: CT scan range is insufficient for various reasons in head and neck Tomotherapy®. To solve that problem, Re-CT simulation is good because CT scan range affects accurate dose calculations, but there are problems such as increased exposure dose, inconvenience, and a change in treatment schedule. We would like to evaluate the minimum CT scan range required by changing the plan setup parameter of the existing CT scan range. Materials and methods: CT Simulator(Discovery CT590 RT, GE, USA) and In House Head & Neck Phantom are used, CT image was acquired by increasing the image range from 0.25cm to 3.0cm at the end of the target. The target and normal organs were registered in the Head & Neck Phantom and the treatment plan was designed using ACCURAY Precision®. Prescription doses are Daily 2.2Gy, 27 Fxs, Total Dose 59.4Gy. Target is designed to 95%~107% of prescription dose and normal organ dose is designed according to SMC Protocol. Under the same treatment plan conditions, Treatment plans were designed by using five methods(Fixed-1cm, Fixed-2.5cm, Fixed-5cm, Dynamic-2.5cm Dynamic-5cm) and two pitches(0.43, 0.287). The accuracy of dose delivery for each treatment plan was analyzed by using EBT3 film and RIT(Complete Version 6.7, RIT, USA). Results: The accurate treatment plan that satisfying the prescribed dose of Target and the tolerance dose in normal organs(SMC Protocol) require scan range of at least 0.25cm for Fixed-1cm, 0.75cm for Fixed-2.5cm, 1cm for Dynamic-2.5cm, and 1.75cm for Fixed-5cm and Dynamic-5cm. As a result of AnalysisAnalysis by RIT. The accuracy of dose delivery was less than 3% error in the treatment plan that satisfied the SMC Protocol. Conclusion: In case of insufficient CT scan range in head and neck Tomotherapy®, It was possible to make an accurate treatment plan by adjusting the FW among the setup parameter. If the parameter recommended by this author is applied according to CT scan range and is decide whether to re-CT or not, the efficiency of the task and the exposure dose of the patient are reduced.

Evaluation of the Usefulness of Exactrac in Image-guided Radiation Therapy for Head and Neck Cancer (두경부암의 영상유도방사선치료에서 ExacTrac의 유용성 평가)

  • Baek, Min Gyu;Kim, Min Woo;Ha, Se Min;Chae, Jong Pyo;Jo, Guang Sub;Lee, Sang Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.7-15
    • /
    • 2020
  • Purpose: In modern radiotherapy technology, several methods of image guided radiation therapy (IGRT) are used to deliver accurate doses to tumor target locations and normal organs, including CBCT (Cone Beam Computed Tomography) and other devices, ExacTrac System, other than CBCT equipped with linear accelerators. In previous studies comparing the two systems, positional errors were analysed rearwards using Offline-view or evaluated only with a Yaw rotation with the X, Y, and Z axes. In this study, when using CBCT and ExacTrac to perform 6 Degree of the Freedom(DoF) Online IGRT in a treatment center with two equipment, the difference between the set-up calibration values seen in each system, the time taken for patient set-up, and the radiation usefulness of the imaging device is evaluated. Materials and Methods: In order to evaluate the difference between mobile calibrations and exposure radiation dose, the glass dosimetry and Rando Phantom were used for 11 cancer patients with head circumference from March to October 2017 in order to assess the difference between mobile calibrations and the time taken from Set-up to shortly before IGRT. CBCT and ExacTrac System were used for IGRT of all patients. An average of 10 CBCT and ExacTrac images were obtained per patient during the total treatment period, and the difference in 6D Online Automation values between the two systems was calculated within the ROI setting. In this case, the area of interest designation in the image obtained from CBCT was fixed to the same anatomical structure as the image obtained through ExacTrac. The difference in positional values for the six axes (SI, AP, LR; Rotation group: Pitch, Roll, Rtn) between the two systems, the total time taken from patient set-up to just before IGRT, and exposure dose were measured and compared respectively with the RandoPhantom. Results: the set-up error in the phantom and patient was less than 1mm in the translation group and less than 1.5° in the rotation group, and the RMS values of all axes except the Rtn value were less than 1mm and 1°. The time taken to correct the set-up error in each system was an average of 256±47.6sec for IGRT using CBCT and 84±3.5sec for ExacTrac, respectively. Radiation exposure dose by IGRT per treatment was measured at 37 times higher than ExacTrac in CBCT and ExacTrac at 2.468mGy and 0.066mGy at Oral Mucosa among the 7 measurement locations in the head and neck area. Conclusion: Through 6D online automatic positioning between the CBCT and ExacTrac systems, the set-up error was found to be less than 1mm, 1.02°, including the patient's movement (random error), as well as the systematic error of the two systems. This error range is considered to be reasonable when considering that the PTV Margin is 3mm during the head and neck IMRT treatment in the present study. However, considering the changes in target and risk organs due to changes in patient weight during the treatment period, it is considered to be appropriately used in combination with CBCT.

Comparison of Target Localization Error between Conventional and Spiral CT in Stereotactic Radiosurgery

  • Kim, Jong-Sik;Ju, Sang-Kyu;Park, Young-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.12 no.1
    • /
    • pp.20-25
    • /
    • 2000
  • The accuracy of the target localization was evaluated by conventional and spiral CT in stereotactic radiosurgerv. Conventional and spiral CT images were obtained with geometrical phantom, which was designed to produce exact three-dimensional coordinates of several objects within 0.1mm error range. Geometrical phantom was attached by BRW headframe, intermediate head ring, and CT localizer. Twentv-seven slices of conventional CT image were scanned at 3 mm slice thickness. Spiral CT images were scanned at 3 mm slice thickness from the pitch value 1 to 3, and twenty-seven slices of image were obtained per each the pitch value. These CT images were transferred to a treatment planning system(X-knife, Radionics) by ethernet, Three-dimensional coordinates of these images measured from the treatment planning system were compared to known values of geometrical phantom. The mean localization error of the target localization of conventional CT was 1.4mm. In case of spiral CT, the error of the target localization was within 1.6mm from the pitch value 1 to 1.3, but was more than 30mm above the pitch value 1.5. In conclusion, as the localization error of spiral CT was increased in high pitch value compared to conventional CT, the application of spiral CT will be with caution in stereotactic radiosurgery.

  • PDF

Skin Dose Distributions with Spoiler of 6MV x-ray for Head and Neck Tumor (두경부암 치료를 위한 6MV X-선 산란판의 제작과 산란분포 측정)

  • Lee, Ho-Soo;Lee, Jong-Keol;Lee, Byung-Jun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.7 no.1
    • /
    • pp.176-184
    • /
    • 1995
  • It is very useful benefits to use the megavoltage photon beams in deep site tumor radiotherapy for skin sparing effects. But, In some cases of head and mock tumors, it is often necessary to use spoiler for rapid buildup on skin region. A spoiler with tissue equivalent material to be moved between the patients and the collimator can increase or control the skin dose and buildup region due to position and thickness of the spoiler was measured. Then, the effect of spoiler on skin dose and build up region in protruded tumor of head and neck was evaluated quantitatively. The measurements were abtained with PTW 2334 chamber (Markus type) on a polystylene phantom for 6MV x-ray from an accelerator.

  • PDF

Assessment of the Eye Lens Dose Reduction by Bismuth Shields in Rando Phantom Undergoing CT of the Head (Head CT 검사 시 안구 차폐용 Bismuth사용에 의한 수정체 선량 감소에 대한 평가)

  • Cho, Pyong-Kon;Kim, You-Hyun;Choi, In-Ja;Chang, Sang-Gyu;Chung, Jung-Pyo;Lee, Hyun;Kim, Jang-Seob;Shin, Dong-Cheol;Choi, Jong-Hak;Lee, Ki-Sung;Lee, Won-Ho
    • Journal of radiological science and technology
    • /
    • v.31 no.2
    • /
    • pp.171-175
    • /
    • 2008
  • The aim of this study is to assess the dose reduction of eye lens and availability of bismuth garments resulting from the use of radioprotective bismuth garments to shield the eyes of patients undergoing head CT. Rando phantom and TLDs were used to determine the amount of dose reduction by bismuth shielding of the eye in the following simulated CT scans : (a) scanning of the head including orbits, (b) scanning of the whole head, and (c) $20^{\circ}$ angled scanning of the head excluding orbits. The average dose reduction of eye lens was 43.2%, 36.0% and 1.4% for the three CT scans listed above. Significant reduction in the eye lens dose was achieved by using superficial orbital bismuth shielding during head CT scans. However, bismuth shields should not be used for the patients when their eyes are excluded from the primarily exposed region.

  • PDF

Optimization of Flip Angle at Head & Neck MR Angiography using Gadoteridol (Gadoteridol을 이용한 Head & Neck MR Angiography에서의 적정 Flip Angle)

  • Jeong, Hyunkeun;Kim, Mingi;Song, Jaejun;Nam, Kichang;Choi, Hyunsung;Jeong, Hyundo;Kim, Hochul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.151-159
    • /
    • 2016
  • In this research, we tried to suggest moderate FA(Flip Angle) for CE(Contrast Enhnaced)-Head&Neck MR Angiography with Gadoteridol. For this study, we did test MR phantom and clinical study according to FA change. After that, quantitative analysis was progressed. The results of MR phantom study were as follow: RSP(Reaction Starting Point)was recorded within 300~400 mmol. MPSI(Max Peak Signal Intensity) was 2,086, 3,705, 5,109, 6,194, 7.096, 7,192 [a.u]. MPP(Max Peak Point) was shown at 30, 50, 50, 40, 50, 40 mmol. IRMPSI(Increase Rate of MPSI) was 77.6%, 37.9%, 21.2%, 14.6%, 1.4% as increasing of FA. The results of clinical study were as follow SICB(Signal Intensity of Carotid artery Bifurcation) was recorded respectively 392.5, 4165.2, 4270, 3502.2, 3263.7, 3119.6 [a.u]. ORA(Occurence Rate of Artifact) was increased as 0, 0, 20, 40, 50, 70%. According to this research, we are not only able to assure that increase of FA can be effect on H1 spin's SI(Signal Intensity) which was combined with gadolinium agent, but also be effect on artifact rate in blood vessel. In clinical field, we expect that CE-Head&Neck MR Angiography can be performed in a practical way with this research.