• Title/Summary/Keyword: Head Modeling

Search Result 257, Processing Time 0.025 seconds

A prolate spheroidal head modeling of head related transfer function based on ray tracing formula (선추적공식을 이용한 머리전달함수의 회전타원체 형상 모델링)

  • Jo, Hyun;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.934-938
    • /
    • 2008
  • To customize individual characteristics of HRTF, a spherical model has been used for structural modeling technique. A pseudo-code of prolate spheroidal HRTF caused by incident acoustic point source is already developed, and it can be used a head shadow filter for structural modeling of HRTF. In this research, to see the necessity and efficiency of spheroidal head modeling, ITD optimization is performed on CIPIC HRTF database. From given cost function, ITD-optimized spheroidal head model, whose ITD information is the most matched version of measured ITD information, is found by varying head parameters subject by subject. By comparing results of ITD-optimized spheroids and ITD-optimized spheres, we concluded that a spherical head model is more efficient way of generating head shadow effect than a spheroidal head model does.

  • PDF

Modeling HRTFs for Customization (맞춤형 머리전달함수 구현을 위한 모델링 기법)

  • Shin, Ki-H.;Park, Young-Jin;Park, Yoon-Shik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.641-644
    • /
    • 2005
  • This study reveals some recent attempt in modeling empirically obtained B&K HATS (Head and Torso Simulator) HRTFs (Head Related Transfer Functions) to Isolate parameters that stimulate lateral and elevation perception. Localization using non-individual HRTFs often yields poor performance in synthesizing virtual sound sources when applied to a group of individuals due to differences in size and shape of head, pinnae, and torso. For realization of both effective and efficient virtual audio it is necessary to develop a method to tailor a given set of non-individual HRTFs to fit each listener without measuring his/her HRTF set. Pole-zero modeling is applied to fit HRIRs (Head Related Impulse Responses) and modeling criterions for determining suitable number of parameters are suggested for efficient modeling. Horizontal HRTFs are modeled as minimum-phase transfer functions with appropriate ITDs (Interaural Time Delay) obtained from RTF (Ray Tracing Formula) to better fit the size of listener's head for usage in simple virtualizer algorithms without complex regularization processes. Result of modeling HRTFs in the median plane is shown and parameters responsible for elevation perception are isolated which can be referred to in the future study of developing customizable HRTFs.

  • PDF

Comparison between a spherical head model and a prolate spheroidal head model used in HRTF customization (맞춤형 머리전달함수에 사용될 수 있는 장구 회전타원체 형상 머리모델과 구형 머리모델 간의 비교)

  • Jo, Hyun;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1009-1013
    • /
    • 2007
  • To do a HRTF customization, researchers used a spherical head model for modeling the head block of structural modeling of HRTF, which is the one of the technique for HRTF customization, because of its simplicity. In this paper, an analytic spheroidal HRTF caused by an incident point source will be introduced. Using proposed spheroidal HRTF, near-field HRTF customization can be applicable through a structural modeling of HRTF. To see the necessity of sheroidal head model, comparison of two analytic solutions, which are classical spherical HRTF and proposed spheroidal HRTF, will be shown. On the view point of ITD, optimal head model which matches with the measured ITD of KEMAR HRTF can be obtained. ITD results show that there are only slight differences between spherical and spheroidal head model. Magnitude comparison is made by constructing head model using measured head size. Although magnitude comparison is not studied between optimal models, the results of 24 of 36 subjects are shown that spheroidal head model matches notch frequency pattern of measured HRTF better than those of spherical one, where the sound source is at contralateral position.

  • PDF

Comparison of head-related transfer function models based on principal components analysis (주성분 분석법을 이용한 머리전달함수 모형화 기법의 성능 비교)

  • Hwang, Sung-Mok;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.920-927
    • /
    • 2008
  • This study deals with modeling of Head-Related Transfer Functions (HRTFs) using Principal Components Analysis (PCA) in the time and frequency domains. Four PCA models based on Head-Related Impulse Responses (HRIRs), complex-valued HRTFs, augmented HRTFs, and log-magnitudes of HRTFs are investigated. The objective of this study is to compare modeling performances of the PCA models in the least-squares sense and to show the theoretical relationship between the PCA models. In terms of the number of principal components needed for modeling, the PCA model based on HRIR or augmented HRTFs showed more efficient modeling performance than the PCA model based on complex-valued HRTFs. The PCA model based on HRIRs in the time domain and that based on augmented HRTFs in the frequency domain are shown to be theoretically equivalent. Modeling performance of the PCA model based on log-magnitudes of HRTFs cannot be compared with that of other PCA models because the PCA model deals with log-scaled magnitude components only, whereas the other PCA models consider both magnitude and phase components in linear scale.

  • PDF

On the properties of brain sub arachnoid space and biomechanics of head impacts leading to traumatic brain injury

  • Saboori, Parisa;Sadegh, Ali
    • Advances in biomechanics and applications
    • /
    • v.1 no.4
    • /
    • pp.253-267
    • /
    • 2014
  • The human head is identified as the body region most frequently involved in life-threatening injuries. Extensive research based on experimental, analytical and numerical methods has sought to quantify the response of the human head to blunt impact in an attempt to explain the likely injury process. Blunt head impact arising from vehicular collisions, sporting injuries, and falls leads to relative motion between the brain and skull and an increase in contact and shear stresses in the meningeal region, thereby leading to traumatic brain injuries. In this paper the properties and material modeling of the subarachnoid space (SAS) as it relates to Traumatic Brain Injuries (TBI) is investigated. This was accomplished using a simplified local model and a validated 3D finite element model. First the material modeling of the trabeculae in the Subarachnoid Space (SAS) was investigated and validated, then the validated material property was used in a 3D head model. In addition, the strain in the brain due to an impact was investigated. From this work it was determined that the material property of the SAS is approximately E = 1150 Pa and that the strain in the brain, and thus the severity of TBI, is proportional to the applied impact velocity and is approximately a quadratic function. This study reveals that the choice of material behavior and properties of the SAS are significant factors in determining the strain in the brain and therefore the understanding of different types of head/brain injuries.

Application of Soft Computing Based Response Surface Techniques in Sizing of A-Pillar Trim with Rib Structures (승용차 A-Pillar Trim의 치수설계를 위한 소프트컴퓨팅기반 반응표면기법의 응용)

  • Kim, Seung-Jin;Kim, Hyeong-Gon;Lee, Jong-Su;Gang, Sin-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.537-547
    • /
    • 2001
  • The paper proposes the fuzzy logic global approximate optimization strategies in optimal sizing of automotive A-pillar trim with rib structures for occupant head protection. Two different strategies referred to as evolutionary fuzzy modeling (EFM) and neuro-fuzzy modeling (NFM) are implemented in the context of global approximate optimization. EFM and NFM are based on soft computing paradigms utilizing fuzzy systems, neural networks and evolutionary computing techniques. Such approximation methods may have their promising characteristics in a case where the inherent nonlinearity in analysis model should be accommodated over the entire design space and the training data is not sufficiently provided. The objective of structural design is to determine the dimensions of rib in A-pillar, minimizing the equivalent head injury criterion HIC(d). The paper describes the head-form modeling and head impact simulation using LS-DYNA3D, and the approximation procedures including fuzzy rule generation, membership function selection and inference process for EFM and NFM, and subsequently presents their generalization capabilities in terms of number of fuzzy rules and training data.

Balancing of Digital VCR Head Drum (디지털 VCR 헤드 드럼의 밸런싱 연구)

  • 조여욱;이진구
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.61-67
    • /
    • 1998
  • Dynamic stability in rotation of the head drum of digital VCR is very important due to the nature of high rotation speed and small angular inertia. Therefore special considerations on reducing the unbalance and assuring the stability are required the design and manufacturing process. In this paper, newly developed digital head drum is introduced. And advanced methods in analyzing and reducing the unbalance is suggested. LDV(Laser Doppler Vibrometer) was used as a measurement system verifying our modeling and new method for balancing. Experiments show that the theoretical data estimated by modeling of shaft bending caused by unbalance mass and the measured data are almost identical. The deflection was reduced to 30% by applying the suggested balancing method.

  • PDF

3D Overhead Modeling Using Depth Sensor

  • Song, Eungyeol;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.2
    • /
    • pp.83-86
    • /
    • 2014
  • Purpose This paper was purposed to suggest the method to produce the supportive helmet (head correction) for the infants who are suffering from plagiocephaly and to evaluate the level of transformation through 3D model. Method Either of CT or X-ray restored images has been used in making the supportive helmet (Head correction) in general, but these methods of measuring have problems in cost and safety. 3D surface measurement technology was suggested to solve such matters. Results It was to design the transformed model of the head within 0.7cm in average by scanning the surface of head and performing 3D restoration with marching cube and the changing rate of the head was compared in numerical data with 3D model. Conclusion The suggested methods displayed the better performance than the conventional method in respect of the speed and cost.

Influence of Modeling Errors in the Boundary Element Analysis of EEG Forward Problems upon the Solution Accuracy

  • Kim, Do-Won;Jung, Young-Jin;Im, Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.10-17
    • /
    • 2009
  • Accurate electroencephalography (EEG) forward calculation is of importance for the accurate estimation of neuronal electrical sources. Conventional studies concerning the EEG forward problems have investigated various factors influencing the forward solution accuracy, e.g. tissue conductivity values in head compartments, anisotropic conductivity distribution of a head model, tessellation patterns of boundary element models, the number of elements used for boundary/finite element method (BEM/FEM), and so on. In the present paper, we investigated the influence of modeling errors in the boundary element volume conductor models upon the accuracy of the EEG forward solutions. From our simulation results, we could confirm that accurate construction of boundary element models is one of the key factors in obtaining accurate EEG forward solutions from BEM. Among three boundaries (scalp, outer skull, and inner skull boundary), the solution errors originated from the modeling error in the scalp boundary were most significant. We found that the nonuniform error distribution on the scalp surface is closely related to the electrode configuration and the error distributions on the outer and inner skull boundaries have statistically meaningful similarity to the curvature distributions of the boundary surfaces. Our simulation results also demonstrated that the accumulation of small modeling errors could lead to considerable errors in the EEG source localization. It is expected that our finding can be a useful reference in generating boundary element head models.

Modeling of individual head-related impulse responses using a set of general basis functions (보편적인 기저함수를 이용한 개인의 머리전달함수 모델링)

  • Hwang, Sung-Mok;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1430-1436
    • /
    • 2007
  • A principal components analysis (PCA) of the median head-related impulse responses (HRIRs) in the CIPIC HRTF database reveals that the individual HRIRs can be adequately reconstructed by a linear combination of 12 orthonormal basis functions. These basis functions can be used generally to model arbitrary HRIRs, which are not included in the process to obtain the basis functions. To clarify whether these basis functions can be used to model other set of arbitrary HRIRs, an numerical error analysis for modeling and a series of subjective listening tests were carried out using the measured and modeled HRIRs. The results showed that the set of individual HRIRs, which were measured in our lab using different measurement conditions, techniques, and source positions, can be well modeled with reasonable accuracy. Furthermore, all subjects reported not only the accurate vertical perception but also the front-back discrimination with the modeled HRIRs based on 12 basis functions. However, as less basis functions were used for HRIR modeling, the modeling accuracy and localization performance deteriorated.

  • PDF