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ABSTRACT 

 

This study deals with modeling of Head-Related Transfer Functions (HRTFs) using Principal Components Analysis (PCA) 
in the time and frequency domains. Four PCA models based on Head-Related Impulse Responses (HRIRs), complex-valued 
HRTFs, augmented HRTFs, and log-magnitudes of HRTFs are investigated. The objective of this study is to compare modeling 
performances of the PCA models in the least-squares sense and to show the theoretical relationship between the PCA models. In 
terms of the number of principal components needed for modeling, the PCA model based on HRIR or augmented HRTFs 
showed more efficient modeling performance than the PCA model based on complex-valued HRTFs. The PCA model based on 
HRIRs in the time domain and that based on augmented HRTFs in the frequency domain are shown to be theoretically 
equivalent. Modeling performance of the PCA model based on log-magnitudes of HRTFs cannot be compared with that of other 
PCA models because the PCA model deals with log-scaled magnitude components only, whereas the other PCA models 
consider both magnitude and phase components in linear scale. 

1. Introduction 
Human can perceive a sound direction as one of the 

crucial auditory abilities with Head-Related Transfer 
Functions (HRTFs)(1) which is defined as the sound 
pressure at the listener’s eardrum divided by the sound 
pressure measured at the position of the head center with 
the head absent. The physical structures of a listener, 
such as head, external ear (pinna), shoulder, and torso, 
transform the spectrum of sound waves when they reach 
to the listener’s eardrum. This physical transform of 
sound waves is characterized by the general concept of 
HRTF, and the HRTFs contain all information on the 
primary sound cues including interaural time difference, 
interaural level difference, and spectral modification.  

In the headphone-based simulation, if sounds are 
filtered with HRTFs and delivered to a listener through a 
pair of headphones, then a virtual acoustic environment 
can be produced and the listener feels the spatialized 
sounds appear to originate from well-designed directions 
in the 3-dimensional space surrounding him/her. Systems 
or techniques generating spatialized sounds and 
conveying them to a listener is referred Virtual Auditory 

Display (VAD)(2,3). VAD has many promising 
applications such as entertainment including PC games, 
military training, virtual audio including home theatre, 
teleconference, auditory navigation, and so on. Therefore, 
it is expected that more and more attention will be paid 
on VAD and the study on VAD will has a promising 
future. 

Since VAD generates convincing 3-dimensional 
sounds by real-time convolution of audio source with the 
HRTFs corresponding to the desired source positions, 
VAD requires a huge library containing the HRTFs 
corresponding to source positions densely distributed in 
the 3-dimensional space. In other words, many HRTFs 
must be empirically measured and stored in order to 
generate well-spatialized sounds by VAD, and this 
constraint makes real-time implementation difficult and 
requires large memory size. Thus, it is necessary to 
model the HRTFs using only a few parameters while 
keeping the perceptual relevant features of the HRTFs 
intact. 

The modeling of spatial dependence of HRTFs or 
Head-Related Impulse Responses (HRIRs), which are the 
time-domain counterpart of the HRTFs, by a set of basis 
functions has been attempted by several authors. 
Especially, many authors utilized Principal Components 
Analysis (PCA) or Karhunen-Loève expansion (KLE), 
which is mathematically equivalent to PCA, to obtain the 
basis functions(4~11). PCA is one of the statistical 
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procedures that try to provide an efficient representation 
of a set of correlated data. In the frequency domain, 
Martens(4) first applied the PCA to model HRTFs. He 
computed a set of basis functions from the critical-band-
filtered HRTFs in the horizontal plane. Kistler and 
Wightman(5) performed a PCA of the HRTFs data, which 
were measured from 256 source positions distributed 
around the subject’s head (10 subjects), for two ears on 
each subject, yielding 5300 HRTFs. Then, they showed 
that the log-magnitudes of HRTFs can be adequately 
approximated by a linear combination of 5 basis spectral 
shapes, and they showed the systematic tendencies in the 
weights of the basis functions according to the source 
position. They also successfully demonstrated a 
technique for low-order HRTF representation with a 
series of psychophysical validations. Chen et al.(7) 
obtained the orthogonal basis functions from the KLE of 
the complex-valued (both magnitude and phase) HRTFs. 
In the time domain, Wu et al.(8) performed the KLE of 
HRIRs. Shin and Park(9) performed the PCA of HRIRs of 
45 subjects. Hwang and Park(10,11) also performed the 
PCA of HRIRs and showed the systematic elevation-
dependency in the weights of the basis functions. 

Although many PCA models have already been 
developed in time and frequency domains, the systematic 
comparison of their modeling performance and analysis 
of their theoretical relationship are not reported yet. Thus, 
the goal of this study is to compare the modeling 
performance of several PCA models in the least-squares 
sense and to show the theoretical relationship between 
the PCA models. In the time and frequency domains, we 
deal with four PCA models based on HRIRs, complex-
valued HRTFs, augmented HRTFs, and log-magnitudes 
of HRTFs. 

 

2. Principal Components Analysis for 
HRTFs modeling 

The basic idea of PCA is to simplify the dataset by 
reducing multidimensional dataset to lower dimensions, 
while keeping the variation present in the original dataset 
as much as possible. In this study, the PCA is carried out 
using the median-plane HRIRs in the CIPIC HRTF 
database(12) containing 45 subjects’ individual HRIRs. 
Since the CIPIC HRTF database is available at the 
elevation angles from -45° to 230° at 5.625° intervals, 
2205 median-plane HRIRs (45 subjects × 49 elevations) 
are included in the PCA.  

 
2.1. General procedure of PCA 
For convenience of further explanation, the general 

procedure of PCA is briefly introduced. The first step in 
PCA is to make a mean-subtracted data matrix from the 

original data matrix (Y: N×M). The empirical mean 
vector (u: N×1) is given by 
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The mean-subtracted data matrix (G: N×M) is given by 
 

G = Y - u · h ,               (2) 
 
where, h (1×M) is a row vector of all 1’s. The next step 
is to compute a covariance matrix (C) of the mean-
subtracted data matrix as 
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where ⓧ and * indicate the outer product and the 
hermitian operators, respectively. The basis vectors 
(basis functions), vi (i=1,2,…,q), are the q eigenvectors 
of the covariance matrix corresponding to the first q 
largest eigenvalues, and they are orthonormal to each 
other. These basis vectors are called principal 
components (PCs). If q=N, then the original dataset can 
be fully reproducible by a linear combination of the N 
PCs with the empirical mean. However, in many 
practical applications, q is smaller than N because the 
objective of PCA is to reduce the dimension of dataset. 
Thus, one can obtain an approximate of the original 
dataset only by using the q (≪N) PCs. The weights of 
PCs (PCWs), W, can be computed by 
 

W = V* · G ,                (4) 
 
where V=[v1 v2 ··· vq]. The matrix composed of the 
approximates (Ŷ), i.e., the modeled data matrix, is 
computed by 
 

Ŷ = Ĝ + u · h ,               (5) 
 
where Ĝ = V · W. Then, the number of PCs, which are 
needed for modeling, should be determined. Reasonable 
measures to determine the number of PCs are the 
percentage variance and the percentage modeling error in 
the least-squares sense. The percentage variance (% var) 
is expressed as 
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where λi is the ith largest eigenvalue of the covariance 
matrix and Ĝk indicates the modeled mean-subtracted 
data matrix from the first k PCs. The percentage 
modeling error (% error) is defined as 
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where Y and Ŷk indicate the original data matrix and the 
modeled data matrix from the first k PCs, respectively. 
Subscript F indicates the matrix Frobenius norm. The 
variance (% var) excludes the empirical mean, whereas 
the modeling error (% error) includes it. 
 

2.2. PCA of HRIRs 
In 1997, Wu et al.(8) tried to model HRIRs based on 

several basis vectors obtained from the KLE. However, 
they obtained the basis vectors from only single subject’s 
data. More recently, Shin and Park(9) obtained a set of 
basis vectors at each source position from the PCA of the 
pinna responses of multiple subjects. However, they 
included the pinna response only corresponding to the 
early response that lasts for 0.2 ms since the arrival of 
direct pulse in the HRIR, i.e., the basis vectors obtained 
by them are for the pinna response only. In this section, 
we expand on these previous works. We extract a set of 
basis functions not only for the pinna response but for 
the shoulder and torso responses from the median-plane 
HRIRs of 45 subjects. 

Prior to the PCA, a pre-processing on the median-
plane HRIRs is carried out to remove the initial time 
delay, defined as the time at which the pulse in HRIR 
first exceeds 12% of its maximum amplitude, and to 
extract the early response that lasts for 1.5 ms since the 
arrival of direct pulse(10,11). The initial time delay 
indicates the propagation time of sound wave from a 
source to a listener’s eardrum, and this can be reinserted 
later if needed. This early response over the 1.5 ms 
following the arrival of the direct pulse is the data on 
which PCA is performed, and this response includes the 
effects of pinna, head, shoulder, and torso(13). Thus, the 
size of dataset to be analyzed in PCA can be reduced 
without loss of meaningful information by the pre-
processing. In this case, the dimension of the original 
data matrix, Y, is 67×2205. 2205 corresponds to the total 
number of median-plane HRIRs and 67 corresponds to 
the number of samples of the pre-processed HRIR 
(sampling frequency: 44.1 kHz). The empirical mean (u), 

the mean-subtracted HRIRs (G), and the covariance 
matrix (C) can be computed from eqs. (1), (2), and (3). 
The PCs, vi,T (i=1,2,…,q), are orthonormal to each other 
as 
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where < , > indicates the inner product operator of two 
vectors. Subscript T means that the PCs are obtained in 
the time domain. The PCWs can be computed from eq. 
(4) and the HRIRs can be modeled by eq. (5). The 
number of PCs for modeling of HRIRs can be 
determined from % var and % error in eqs. (6) and (7), 
respectively. Table 1 summarizes % var and % error for 
the left-ear median-plane HRIRs as a function of the 
number of PCs. As the number of PCs increases, % var 
increases and % error decreases exponentially. We 
arbitrarily set the modeling error bound of 5% 
(comparable to 90% of the variance in HRIRs), yielding 
12 PCs. We can obtain several physical and meaningful 
interpretations on the PCs and PCWs, and these 
interpretations are described in detail in the authors’ 
previous work(11). 

 

Table 1 Percentage variance (% var) and modeling error 
(% error) for the left-ear HRIRs as a function of the 
number of PCs (k). 

k % var % error  k % var % error
1 25.1 36.7  11 88.7 5.5 
2 42.4 28.2  12 90.2 4.8 
3 52.3 23.4  13 91.4 4.2 
4 59.8 19.7  14 92.4 3.7 
5 66.5 16.4  15 93.2 3.3 
6 72.0 13.7  16 93.9 3.0 
7 76.9 11.3  17 94.5 2.7 
8 80.5 9.6  18 95.1 2.4 
9 83.9 7.9  19 95.6 2.2 

10 86.4 6.7  20 96.0 2.0 
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% error

µ = 4.90(%)
σ = 5.11(%)

 
Fig. 1 Histogram of modeling error of each HRTF when 

12 PCs obtained in the time domain are used. 
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Modeled HRTF (complex-valued) for each subject and 
for each elevation can be obtained by the Fourier 
transform of the modeled HRIR, and the modeling error 
can be computed by eq. (7). In this case, Y and Ŷ are 
replaced with y and ŷ, which are computed by the 1024-
point discrete Fourier transform (DFT) of measured and 
modeled HRIR (67×1) with zero-padding, respectively. 
Fig. 1 shows the histogram of modeling error of each 
HRTF when the 12 PCs obtained in the time domain are 
used. µ and σ at the upper-right corner of the figure 
indicate the mean value and the standard deviation of the 
2205 modeling errors. 
 

2.3. PCA of complex-valued HRTFs 
The HRTFs also can be modeled from PCA of HRTFs 

in the frequency domain. Note that HRTFs are complex 
valued, i.e., they are composed of real and imaginary 
parts (or magnitude and phase). Chen et al.(7) first tried to 
model the complex-valued HRTFs from a set of 
orthogonal basis vectors, which are obtained from the 
KLE of single subject’s complex-valued HRTFs. In this 
section, we expand on their approach. 2205 complex-
valued HRTFs of 45 subjects, which are obtained from 
the 1024-point DFT of the median-plane pre-processed 
HRIRs with zero-padding, are included in the PCA. The 
overall procedure is the same with the one in the time 
domain described in section 2.2. The empirical mean (u), 
the mean-subtracted complex-valued HRTFs (G), and the 
covariance matrix (C) computed from eqs. (1), (2), and 
(3) are also complex-valued vector or matrix. The 
complex-valued PCs, vi,C (i=1,2,…,q), are orthonormal 
to each other as 
 

*
, , , , , ,, ( ) ( )k C l C l R l I k R k Ij j< >= + ⋅ +v v v v v v          (9-a) 

, , , ,( ) ( )T T
l R l I k R k Ij j= − ⋅ + ⋅v v v v                   (9-b) 

, , , , , , , ,( ) ( )T T T T
l R k R l I k I l R k I l I k R klj δ= ⋅ + ⋅ + ⋅ − ⋅ =v v v v v v v v , (9-c) 

 
where subscript C mean that the PCs are complex-valued, 
and subscripts R and I indicate the real and imaginary 
parts of the complex-valued PC, respectively. Superscript 
T indicates the transpose operator. The PCWs can be 
computed by eq. (4) and the complex-valued HRTFs can 
be modeled by eq. (5). Table 2 summarizes % var and % 
error for the left-ear complex-valued HRTFs in the 
median plane as a function of the number of PCs. When 
the first 6 complex-valued PCs obtained from PCA of the 
complex-valued HRTFs in the frequency domain are 
used for modeling, the complex-valued HRTFs can be 
modeled with % var of 89.4% and % error of 5.2%. Note 
that these modelling performances are comparable with 
those based on the real-valued 12 PCs obtained from 
PCA of HRIRs in section 2.2. 
 

Table 2 Percentage variance (% var) and modeling error 
(% error) for the left-ear complex-valued HRTFs as a 
function of the number of PCs (k). 

k % var % error  k % var % error
1 41.9 28.5  6 89.4 5.2 
2 59.0 20.1  7 91.8 4.0 
3 70.2 14.6  8 93.3 3.3 
4 79.4 10.1  9 94.6 2.7 
5 85.5 7.1  10 95.5 2.2 
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% error

µ = 5.21(%)
σ = 5.13(%)

 
Fig. 2 Histogram of modeling error of each HRTF when 

6 complex-valued PCs obtained in the frequency 
domain are used. 

 
2.4. PCA of augmented HRTFs 
The complex-valued HRTFs matrix (YC: N×M) can be 

augmented to the real-valued matrix (YA: 2N×M), which 
are composed of two real-valued matrices corresponding 
to the real and imaginary parts of the complex-valued 
HRTFs. This can be expressed as 
 

R
A

I

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Y
Y

Y
.                 (10) 

 
As like PCA of HRIRs or PCA of complex-valued 
HRTFs, the HRTFs also can be modeled from PCA of 
augmented HRTFs in the frequency domain. Note that 
the augmented HRTFs are real valued. The original data 
matrix, Y, is composed of the augmented HRTFs in the 
median plane. The overall procedure of the PCA is the 
same with the one described in section 2.2. The empirical 
mean (u), the mean-subtracted HRTFs (G), and the 
covariance matrix (C) computed from eqs. (1), (2), and 
(3) are real-valued vector or matrix. Note that the first 
half components (N×1) of the real-valued PCs (2N×1) 
correspond to the real part of complex-valued basis 
vector, and the other components correspond to the 
imaginary part of complex-valued basis vector. The 
orthonormality condition is expressed by 
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However, the PCA models based on augmented 

HRTFs in the frequency domain is theoretically 
equivalent to the PCA model based on HRIRs in the time 
domain. In other words, the HRTF, which is the Fourier 
transform pair of HRIR, can be modeled by linear 
combination of PCs, which are the Fourier transform pair 
of PCs obtained from PCA of HRIRs in the time domain. 
Furthermore, the PCs in the frequency domain, which are 
obtained by the Fourier transform of the PCs in the time 
domain, are orthonormal to each other and their weights 
are the same with the PCWs in the time domain except 
for just scaling due to the number of DFT. A derivation 
of the theoretical equivalence of the two PCA models is 
provided in Appendix. % var and % error for the left-ear 
augmented HRIRs as a function of the number of PCs is 
the same with the ones in the time domain shown in 
Table 1. Histogram of modeling error of each augmented 
HRTF based on 12 PCs is identical to the one in the time 
domain shown in Fig. 1, as expected. 
 

2.5. PCA of on log-magnitudes of HRTFs 
Sections 2.3 and 2.4 deal with HRTF modeling from 

PCA of complex-valued or augmented HRTFs in the 
frequency domain. However, many previous studies on 
human HRTFs have focused on the magnitude 
components(14~17). Especially, Kistler and Wightman(5) 
applied PCA of directional transfer functions (DTFs: 
mean-subtracted HRTFs) of 10 subjects to model only 
the magnitude components of the HRTFs. However, 
synthesis of stimuli requires both magnitude and phase 
components. Thus, they constructed a simple model of 
the phase components of HRTFs, based on an 
assumption that HRTFs are minimum-phase functions(18). 
Of course, it is unfair to compare the modeling 
performance of the PCA model based on log-magnitudes 
of HRTFs with the one of other PCA models because the 
PCA model based on log-magnitudes of HRTFs deals 
with log-scaled magnitude components only whereas the 
other PCA models deal with both magnitude and phase 
components in linear scale. However, it is meaningful to 
expand the previous study by considering more subjects’ 
data. 

The log-magnitude of HRTF (Hlog) are computed by 
 

Hlog = 20 log10|HC| ,          (12) 
 

where HC is the complex-valued HRTF. The original data 
matrix, Y, is composed of the log-magnitudes of HRTFs 
in the median plane. The overall procedure of the PCA is 
the same with the one described in section 2.2. However, 
the dimension of Y is 458×2205 in this case. 458 
corresponds to the number of frequency components of 
the log-magnitude of HRTF (from 300 Hz to 20 kHz 
with 43.07 Hz intervals) included in the PCA. The 
empirical mean (u), the mean-subtracted HRTFs (G), and 
the covariance matrix (C) computed from eqs. (1), (2), 
and (3) are real-valued vector or matrix. The PCs, vi,log 
(i=1,2,…,q), are orthonormal to each other. The PCWs 
can be computed by eq. (4) and the log-magnitudes of 
HRTFs can be modeled by eq. (5). Table 3 
summarizes % var and % error for the left-ear log-
magnitudes of HRTFs in the median plane as a function 
of the number of PCs. When the first 12 PCs are used for 
modeling, the log-magnitudes of HRTFs can be modeled 
with % var of 91.3% and % error of 4.0%. Histogram of 
modeling error of each log-magnitude of HRTF based on 
the 12 PCs is shown in Fig. 3. 
 

Table 3 Percentage variance (% var) and modeling error 
(% error) for the left-ear log-magnitude of HRTF as a 
function of the number of PCs (k). 

k % var % error  k % var % error
1 42.5 26.7  11 90.3 4.5 
2 57.1 19.9  12 91.3 4.0 
3 66.3 15.7  13 92.2 3.6 
4 71.6 13.2  14 92.9 3.3 
5 76.5 10.9  15 93.5 3.0 
6 80.0 9.3  16 94.0 2.8 
7 83.1 7.8  17 94.5 2.6 
8 85.6 6.7  18 94.9 2.4 
9 87.6 5.8  19 95.2 2.2 

10 89.1 5.1  20 95.6 2.0 
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µ = 5.46(%)
σ = 4.78(%)

 
Fig. 3 Histogram of modeling error of each log-
magnitude of HRTF when 12 PCs obtained in the 
frequency domain are used. 
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3. Discussions on PCA models 
In section 2, four kinds of PCA models in the time and 

frequency domains are investigated. Each PCA model 
has advantages and disadvantages. The PCA models 
based on log-magnitudes of HRTFs in the frequency 
domain under the assumption of a minimum phase 
property of HRTFs can reasonably represent human’s 
sense of hearing because it is roughly logarithmic, but 
the minimum phase assumption leads to HRIR 
approximation that is much shorter than the original 
HRIR and in which the pinna and torso contributions are 
merged. The PCA model based on log-magnitudes of 
HRTFs deals with log-scaled magnitude components 
only, whereas the other PCA models consider both 
magnitude and phase components in linear scale.  

A noticeable difference between PCA models in the 
time and frequency domains (except for the PCA model 
based on augmented HRTFs) is that it is not clear which 
PCs in the frequency domain are due to the pinna or to 
the shoulder/torso only because the shoulder/torso 
response and pinna response are closely coupled, 
whereas PCs in the time domain can be classified into 
the effects of pinna or shoulder/torso because HRIR can 
be decomposed into a series of temporal sound events(11). 

The PCA models based on HRIRs in the time domain 
and based on augmented HRTFs in the frequency domain 
are theoretically equivalent, i.e., the Fourier transform 
pair of the PCA model based on HRIRs is the PCA 
model based not on complex-valued HRTFs but on 
augmented HRTFs. 

Form the modeling results in section 2, in terms of the 
number of PCs one might conclude that the PCA model 
based on complex-valued HRTFs is more efficient to 
model HRTFs than the PCA model based on HRIRs or 
augmented HRTFs because the half of the number of PCs 
are required in the PCA model based on complex-valued 
HRTFs in comparison with the other PCA models. 
Although this sounds reasonable, a complex-valued 
vector can be dealt with a 2-dimensional vector 
composed of two 1-dimensional real-valued vectors 
corresponding to the real and imaginary parts of the 
complex-valued vector. Therefore, each complex-valued 
PC can be dealt with two real-valued vectors, and the 6 
complex-valued PCs obtained from PCA of complex-
valued HRTFs are comparable to the 12 real-valued PCs 
obtained from PCA of HRIRs or augmented HRTFs. By 
comparing the results in Table 1 and Table 2, it can be 
found that the modeling performance of PCA model 
based on complex-valued HRTFs is lower than that of 
PCA model based on HRIRs or augmented HRTFs. Fig. 
1 and Fig. 2 also show the same result. We can find the 
reason in the orthonormality condition of PCs. The 
orthonormality condition of PCA model based on 

augmented HRTFs in eq. (11) is similar to the one of 
PCA model based on complex-valued HRTFs in eq. (9). 
In this case, however, the only real part in eq. (9) is 
needed, i.e., the orthonormality condition in eq. (9) is 
stricter than that in eq. (11). In other words, the PCA 
model based on complex-valued HRTFs requires one 
more constraint for PCs than the PCA model based on 
augmented HRTFs. This is the main difference between 
the two PCA models and the reason why the modeling 
performance of the PCA model based on complex-valued 
HRTFs is lower than that of the PCA model based on 
augmented HRTFs or HRIRs.  
 

4. Summary and Conclusions 
The present study dealt with modeling of HRTFs 

using PCA based on HRIRs, complex-valued HRTFs, 
augmented HRTFs, and log-magnitudes of HRTFs. 
Modeling procedure and performance in the least-
squares sense for each PCA model were investigated. In 
terms of the number of PCs needed for modeling, the 
PCA model based on HRIR or augmented HRTFs 
showed more efficient modeling performance than the 
PCA model based on complex-valued HRTFs. This is 
due to the difference of orthonormality condition 
between the models. And the PCA models based on 
HRIRs in the time domain and based on augmented 
HRTFs in the frequency domain are theoretically 
equivalent. However, the PCA model based on 
augmented HRTFs may need larger memory size because 
the dimension of data is doubled. Therefore, we 
recommend the PCA model based on HRIRs in the time 
domain if the target is to model HRTFs in the least-
squares sense. Modeling performance of the PCA model 
based on log-magnitudes of HRTFs cannot be compared 
with that of other PCA models directly because the 
model deals with log-scaled magnitude components only, 
whereas the other PCA models consider both magnitude 
and phase components in linear scale. 
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Appendix 
The theoretical equivalence of PCA models based on 

HRIRs in the time domain and based on augmented 
HRTFs in the frequency domain can be proven by 
showing the equivalence of linear combination of PCs 
and the equivalence of orthogonality of PCs. 

 
A.1. Equivalence of linear combination of PCs 
Let h denotes the HRIR in the time domain. h can be 

modeled by a linear combination of L PCs and empirical 
mean, which are obtained from PCA of HRIRs in the 
time domain as 

( )
1

[ ] [ ] [ ]
L

i i
i

n w n n
=

= ⋅ +∑h v u ,         (A.1) 

 
where vi and wi indicate the ith PC and its PCW (real 
valued), respectively. u is the empirical mean of the 
HRIRs. The Fourier transform pair of vi and u can be 
obtained by the N-point DFT as 
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where WN=ej2π/N (k=1,2,...,N). Vi and U in eqs. (A.2) can 
be augmented as  
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The HRTF (H), which is the Fourier transform pair of the 
HRIR, can be obtained by the N-point DFT as 
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By substituting of eq. (A.1) into eq. (A.4) and 
augmenting it, the augmented HRTF (HA) can be written 
as 
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Thus, the augmented HRTF in the frequency domain can 
be modeled by linear combination of PCs (Vi,A) and 
empirical mean (UA), which are directly computable by 
the Fourier transform of the PCs (vi) and empirical mean 
(u) in the time domain, respectively. Note that the 
weights of vectors (w) in the frequency domain are equal 
to those in the time domain. 

 

A.2. Equivalence of orthogonality of PCs 
The vectors, obtained from the Fourier transform of 

PCs in the time domain, also should be orthogonal to 
each other to be the basis vectors or PCs in the frequency 
domain. Let vp and vq are the pth and qth PCs in the time 
domain and they are orthogonal to each other as 
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Then, by using eq. (A.3) the inner product of Vp,A and 
Vq,A can be written as 
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Therefore, it is proven that the vectors obtained from the 
Fourier transform of PCs in the time domain are also 
orthogonal to each other. This orthogonality is resulted 
from 
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where m is an integer.  
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