• Title/Summary/Keyword: Head Distribution

Search Result 915, Processing Time 0.037 seconds

Clinical Characteristics of Nasopharyngeal Cancer (비인강암의 임상적 특성)

  • Shim Yoon-Sang;Lee Won-Jong
    • Korean Journal of Head & Neck Oncology
    • /
    • v.12 no.1
    • /
    • pp.81-87
    • /
    • 1996
  • We studied the clinical charcteristics of 265 cases of nasopharyngeal carcinomas diagnosed at Korea Cancer Center Hospital over a span of 8 years from Jan. 1987. Male were 187 and Female were 78 and male: female ratio was 2.4 : 1. The age distribution ranged from 2nd decade to 9th decade evenly and mean age was 46.1 years old. Histopathologically squamous cell carcinoma (WHO type 1, 2, 60.8%) were 161 cases and undifferentiated carcinoma (WHO type 3, 39.2%) were 104 cases. Main symptoms and signs were neck mass 199 cases (75.1%), ear symptoms 126(47.5%), nasal symptom 101 (38.1%). The distribution of anatomical subsites were posterior wall 75 (24.7%), lateral wall 175 (72.8%), Inferior wall 15 (2.5%). Tumor staging by AJCC classification, 1992, distributed with stage I 3 cases (1.1%), stage II 5 cases (1.9%), stage III 24 cases (9.1%), stage IV 233 cases (87.9%).

  • PDF

Numerical Optimization of the Coolant Flow Rates through Cylinder Head Gasket Holes by applying CFD Techniques (CFD 기법을 이용한 실린더헤드 가스켓홀 통과 유량의 최적화)

  • 백경욱;이상호;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.121-128
    • /
    • 2000
  • Simple design methods were developed to control the coolant flow rates through cylinder head gasket holes. Applying the concept of flow through an obstruction the ratio of intake to exhaust side flow rates could be easily controlled while maintaining the flow rates per cylinder of the original model. Flow distribution in the coolant passage of the original model was calculated by CFD and the flow rates at the gasket holes were modified based on the calculation results. The calculated flow rated of the modified gasket holes were reasonably close to target values. For more accurate control of the flow rate distribution, a design method with iterative CFD calculations was also suggested. The final size of gasket holes for the target flow rates were obtained just after a few optimization iterations. These methods can be very useful for the optimization of heat transfer characteristics in engine cylinder head and block.

  • PDF

Distribution of Welding Residual Stresses in Laser Welds with the Nail-head shape

  • Kim, Y.P.;Joo, S.M.;Bang, H.S.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.17-22
    • /
    • 2003
  • During the laser welding, weldments are suddenly heated and cooled by laser beam of high density energy. This phenomenon gives an occasion to complex welding residual stresses, which have a great influence on structural instability, in laser welds. However, relevant researches on this field are not sufficient until now and residual stress measurements have experimental and practical limitations. From these reasons, a numerical simulation may be attractive in order to solve the residual stress problem. For clarifying the distribution of heat and welding residual stresses in laser welds with the nail-head shape, authors conduct the finite element analysis (two-dimensional unstationary heat conduction & thermal elastic and plastic analysis). From the results, we can confirm the stress concentration occurs at the place of melting line shape changed in laser welds with the nail-head shape.

  • PDF

Analysis of Head shape of college students for the Headgears (두건류 제작을 위한 남성의 두부 형태 분석)

  • 이진희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.1
    • /
    • pp.182-188
    • /
    • 2004
  • The purpose of the study was to provide scientific and accurate data of head shape for men. This study was carried out on 214 men and Factor analysis, Cluster analysis, Duncan analysis with 15 variables were performed using the data. A 3D scanner was used for visual results of head shape. The results were as follows. First, through factor analysis of the variables, three factors were extracted upon factor scores. The first factor described thickness part, and second factor described width parts and the third factor described vertical length parts. Four clusters represented characteristics of men's head types. Type 1 had a larger head thickness, type 2 had a smaller thickness and smaller width. type 4 had a generally larger head. In the distribution of the four clusters, type 1 was distributed 34%. Type 4 was distributed 23%. According to the results, type 1 of the more thick and narrow head was dominant among head types of men.

Biomechanical Evaluation of the Neck and Shoulder When Using Pillows with Various Inner Materials

  • Kim, Jung-Yong;Park, Ji-Soo;Park, Dae-Eun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.339-347
    • /
    • 2011
  • Objective: The purpose of this study was to evaluate of various material of pillows by using biomechanical variables such as the cervical stability, head pressure distribution, and muscle activity. Method: Eight subjects participated in the experiment. Three different materials such as polyester sponge, memory foam and the buckwheat shell used for Korean traditional pillow were tested. Electro-goniometer, six channels of electromyography(EMG), ten channels of the head pressure sensors were used to measure the biomechanical responses. Surface electrodes were attached to the right/left semispinals capitis(RSC, LSC), the right/left sternocleidomastoid(RSM, LSM), the right/left upper trapezius(RUT, LUT). The cervical stability was evaluated by the angle deviated from the standing neck position. The head pressure distribution was evaluated by the pressure per unit area recorded on the sensors and the intensity of peak pressure. Electromyography(EMG) data were analyzed by using root mean square(RMS) and mean power frequency(MPF). Results: The buckwheat shell material showed a higher stability in the cervical spine then the other pillows during spine position. In terms of head pressure distribution, the memory form indicated the lowest pressure at supine position, buckwheat shell material indicated the lowest pressure during lying down to side, and polyester cushion recorded the highest pressure at all postures. Conclusion: The buckwheat shell material has a biomechanical advantage to maintain a healthy neck angle and reduce the pressure on the head, which means the buckwheat shell is a potential material for ergonomic pillow design. The pillow with memory form showed second best biomechanical performance in this study. Application: The shape of the buckwheat shell pillow and the characteristics of materials can be used to design the pillow preventing neck pain and cervical disk problems.

A Study on Pressure Distribution for Uniform Polishing of Sapphire Substrate

  • Park, Chul jin;Jeong, Haedo;Lee, Sangjik;Kim, Doyeon;Kim, Hyoungjae
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.61-66
    • /
    • 2016
  • Total thickness variation (TTV), BOW, and surface roughness are essential characteristics for high quality sapphire substrates. Many researchers have attempted to increase removal rate by controlling the key process parameters like pressure and velocity owing to the high cost of consumables in sapphire chemical mechanical polishing (CMP). In case of the pressure approach, increased pressure owing to higher deviation of pressure over the wafer leads to significant degradation of the TTV. In this study, the authors focused on reducing TTV under the high-pressure conditions. When the production equipment polishes multiple wafers attached on a carrier, higher loads seem to be concentrated around the leading edge of the head; this occurs because of frictional force generated by the combination of table rotation and the height of the gimbal of the polishing head. We believe the skewed pressure distribution during polishing to be the main reason of within-wafer non-uniformity (WIWNU). The insertion of a hub ring between the polishing head and substrate carrier helped reduce the pressure deviation. Adjusting the location of the hub ring enables tuning of the pressure distribution. The results indicated that the position of the hub ring strongly affected the removal profile, which confirmed that the position of the hub ring changes the pressure distribution. Furthermore, we analyzed the deformation of the head via finite element method (FEM) to verify the pressure non-uniformity over the contact area Based on experiment and FEM results, we determined the optimal position of hub ring for achieving uniform polishing of the substrate.

A Study on Characteristics of SAR Distribution in the Human Head for Portable Phone (휴대폰 전파에 의한 인체두부의 SAR 분포특성에 관한 연구)

  • 김경환;민용기김정
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.355-358
    • /
    • 1998
  • This paper investigate the interaction of electromagnetic fields(EF's) in the human head with respect to the radiated waves from 1.8〔GHz〕 PCS terminal that the titled angles of a monopole antenna between the head and the horizontal axis of the terminal are 45, 60, 75 and 90 degrees respectively. And then, it is found the fact that the induced SAR distri bution in the model of the head gradually decreases by in creasing the titled angle.

  • PDF

Magnetization Distribution in Thin-Film Magnetic Head

  • Shin, Kyung-Ho;Shalyguina, E.E.;Lee, J.H;Rhie, K.
    • Journal of Magnetics
    • /
    • v.5 no.2
    • /
    • pp.55-58
    • /
    • 2000
  • Local magnetic properties and magnetization distributions on the air-bearing surface of a thin-film magnetic head have been studied by using scanning magneto-optical Kerr microscopy. The examined head was a merged MR read/inductive writing head with a write gap equal to 0.3 $\mu m$. Sizes of top and bottom pole-tips on the air-bearing surface of the writing head were equal to $3\mu m\times3\mu m$ and $3\mu m\times30\mu m$, respectively, The measured magnetic characteristics on the head air-bearing surface were found to be very sensitive to the head design. In particular, magnetization distributions were discovered to have asymmetrical shape. Maximum magnitudes of the magnetization were located near the shorten pole-tip. So, it was experimentally proved that more magnetic flux emanates just from this part of the air-bearing head surface.

  • PDF

Waveguide Applicator System for Head and Neck Hyperthermia Treatment

  • Fiser, Ondrej;Merunka, Ilja;Vrba, Jan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1744-1753
    • /
    • 2016
  • The main purpose of this article is a complex hyperthermia applicator system design for treatment of head and neck region. The applicator system is composed of four waveguides with a stripline horn aperture and circular water bolus. The specific absorption rate (SAR) and temperature distribution from this applicator in various numerical phantom models was investigated. For used targets, the treatment planning based on the optimization process made through the SEMCAD X software is added to show the steering possibilities of SAR and thereby temperature distribution. Using treatment planning software, we proved that the SAR and temperature distribution can be effectively controlled (by amplitude and phase changing) improving the SAR and temperature target coverage approximately by 20 %. For the proposed applicator system analysis and quantitative evaluation of two parameters 25 % iso-SAR and $41^{\circ}C$ iso-temperature contours in the treatment area with the respect to sensitive structures in treatment area were defined. To verify our simulation results, the real measurement of reflectivity coefficient as well as the temperature distribution in a homogenous phantom were performed.

A Study on the Distribution of Welding Residual Stresses in Laser Welds with the Nail-head Shape (Nail Head 형상을 가지는 레이저 용접 단면부의 잔류응력 분포 특성에 관한 연구)

  • Bang, Han-Sur;Kim, Young-Pyo;Joo, Sung-Min;Kwon, Young-Sub
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.269-273
    • /
    • 2003
  • During the laser welding, weldments are suddenly heated by laser beam and cooled. This phenomenon gives occasion to complex welding residual stresses, which have a great influence on structural instability strength, in laser welds. However, a relevant research on this field is not sufficient until present and residual stress measurements have experimental and practical limitations. For these reasons a numerical simulation may be attractive in order to solve the residual stress problem. In order to determine the distribution of heat and welding residual stresses in laser welds with the nail-head shape, authors conduct the finite element analysis (two-dimensional unstationary heat conduction & thermal elasto-plastic analysis). From the result of this study, we can confirm the stress concentration is occurred at the place of melting line shape changed in laser welds with the nail-head shape.

  • PDF