• Title/Summary/Keyword: Haze Removal

Search Result 48, Processing Time 0.019 seconds

Hazy Particle Map-based Automated Fog Removal Method with Haziness Degree Evaluator Applied (Haziness Degree Evaluator를 적용한 Hazy Particle Map 기반 자동화 안개 제거 방법)

  • Sim, Hwi Bo;Kang, Bong Soon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1266-1272
    • /
    • 2022
  • With the recent development of computer vision technology, image processing-based mechanical devices are being developed to realize autonomous driving. The camera-taken images of image processing-based machines are invisible due to scattering and absorption of light in foggy conditions. This lowers the object recognition rate and causes malfunction. The safety of the technology is very important because the malfunction of autonomous driving leads to human casualties. In order to increase the stability of the technology, it is necessary to apply an efficient haze removal algorithm to the camera. In the conventional haze removal method, since the haze removal operation is performed regardless of the haze concentration of the input image, excessive haze is removed and the quality of the resulting image is deteriorated. In this paper, we propose an automatic haze removal method that removes haze according to the haze density of the input image by applying Ngo's Haziness Degree Evaluator (HDE) to Kim's haze removal algorithm using Hazy Particle Map. The proposed haze removal method removes the haze according to the haze concentration of the input image, thereby preventing the quality degradation of the input image that does not require haze removal and solving the problem of excessive haze removal. The superiority of the proposed haze removal method is verified through qualitative and quantitative evaluation.

Video Haze Removal Method in HLS Color Space (HLS 색상 공간에서 동영상의 안개제거 기법)

  • An, Jae Won;Ko, Yun-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.1
    • /
    • pp.32-42
    • /
    • 2017
  • This paper proposes a new haze removal method for moving image sequence. Since the conventional dark channel prior haze removal method adjusts each color component separately in RGB color space, there can be severe color distortion in the haze removed output image. In order to resolve this problem, this paper proposes a new haze removal scheme that adjusts luminance and saturation components in HLS color space while retaining hue component. Also the conventional dark channel prior haze removal method is developed to obtain best haze removal performance for a single image. Therefore, if it is applied to a moving image sequence, the estimated parameter values change rapidly and the haze removed output image sequence shows unnatural glitter defects. To overcome this problem, a new parameter estimation method using Kalman filter is proposed for moving image sequence. Experimental results demonstrate that the haze removal performance of the proposed method is better than that of the conventional dark channel prior method.

Sharpness-aware Evaluation Methodology for Haze-removal Processing in Automotive Systems

  • Hwang, Seokha;Lee, Youngjoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.390-394
    • /
    • 2016
  • This paper presents a new comparison method for haze-removal algorithms in next-generation automotive systems. Compared to previous peak signal-to-noise ratio-based comparisons, which measure similarity, the proposed modulation transfer function-based method checks sharpness to select a more suitable haze-removal algorithm for lane detection. Among the practical filtering schemes used for a haze-removal algorithm, experimental results show that Gaussian filtering effectively preserves the sharpness of road images, enhancing lane detection accuracy.

A 4K-Capable Hardware Accelerator of Haze Removal Algorithm using Haze-relevant Features

  • Lee, Seungmin;Kang, Bongsoon
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.212-218
    • /
    • 2022
  • The performance of vision-based intelligent systems, such as self-driving cars and unmanned aerial vehicles, is subject to weather conditions, notably the frequently encountered haze or fog. As a result, studies on haze removal have garnered increasing interest from academia and industry. This paper hereby presents a 4K-capable hardware implementation of an efficient haze removal algorithm with the following two improvements. First, the depth-dependent haze distribution is predicted using a linear model of four haze-relevant features, where the model parameters are obtained through maximum likelihood estimates. Second, the approximated quad-decomposition method is adopted to estimate the atmospheric light. Extensive experimental results then follow to verify the efficacy of the proposed algorithm against well-known benchmark methods. For real-time processing, this paper also presents a pipelined architecture comprised of customized macros, such as split multipliers, parallel dividers, and serial dividers. The implementation results demonstrated that the proposed hardware design can handle DCI 4K videos at 30.8 frames per second.

Improving Performance of Machine Learning-based Haze Removal Algorithms with Enhanced Training Database

  • Ngo, Dat;Kang, Bongsoon
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.948-952
    • /
    • 2018
  • Haze removal is an object of scientific desire due to its various practical applications. Existing algorithms are founded upon histogram equalization, contrast maximization, or the growing trend of applying machine learning in image processing. Since machine learning-based algorithms solve problems based on the data, they usually perform better than those based on traditional image processing/computer vision techniques. However, to achieve such a high performance, one of the requisites is a large and reliable training database, which seems to be unattainable owing to the complexity of real hazy and haze-free images acquisition. As a result, researchers are currently using the synthetic database, obtained by introducing the synthetic haze drawn from the standard uniform distribution into the clear images. In this paper, we propose the enhanced equidistribution, improving upon our previous study on equidistribution, and use it to make a new database for training machine learning-based haze removal algorithms. A large number of experiments verify the effectiveness of our proposed methodology.

Real-time Haze Removal Method using Brightness Transformation based on Atmospheric Scatter Coefficient Rate and Local Histogram Equalization (대기 산란 계수 비율 기반의 밝기변환과 지역적 히스토그램 평활화를 이용한 실시간 안개 제거 방법)

  • Lee, Jae-Won;Hong, Sung-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.1
    • /
    • pp.10-21
    • /
    • 2016
  • Images taken from outdoor are degraded quality by fog or haze, etc. In this paper, we propose a method that provides the visibility improved images through fog or haze removal. We proposed haze removal method that uses brightness transform based on atmospheric scatter coefficient rate with local histogram equalization. To calculate the transmission rate that indicate fog rate in original image, we use atmospheric scatter coefficient rate based on quadratic equations about haze model. And primary brightness transformed image can be obtained by using the obtained transmission rate. Also we use local histogram equalization with proposed brightness transform for effectively image visibility enhancement. Unlike existing methods, our method can process real-time with stable and effect image visibility enhancement. Proposed method use only the luminance images processed by good performance surveillance systems because it represents the real-time processing is required, black-box, digital camera and multimedia equipment is applicable. Also because it shows good performance only with the luminance images processed, Surveillance systems, black boxes, digital cameras, and multimedia devices etc, that require real-time processing can be applied.

Local Dehazing Method using a Haziness Degree Evaluator (흐릿함 농도 평가기를 이용한 국부적 안개 제거 방법)

  • Lee, Seungmin;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1477-1482
    • /
    • 2022
  • Haze is a local weather phenomenon in which very small droplets float in the atmosphere, and the amount and characteristics of haze may vary depending on the region. In particular, these haze reduce visibility, which can cause air traffic interference and vehicle traffic accidents, and degrade the quality of security CCTVs and so on. Therefore, in the past 10 years, research on haze removal has been actively conducted to reduce damage caused by haze. In this study, local haze removal is performed by weight generation using a haziness degree evaluator to adaptively respond to haze-free, homogeneous haze, and non-homogeneous haze cases. And the proposed method improves the limitations of the existing static haze removal method, which assumes that there is haze in the input image and removes the haze. We also demonstrate the superiority of the proposed method through quantitative and qualitative performance evaluations with benchmark algorithms.

Hardware design for haze removal of single image using cumulative histogram (누적 히스토그램에 기반한 단일 영상의 안개 제거를 위한 하드웨어 설계)

  • Lee, Seungmin;Kang, Bongsoon
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.984-987
    • /
    • 2019
  • Recently, autonomous driving technology based on object recognition and lane recognition has attracted attention. However, in foggy weather, haze removal technology is needed because it is difficult to recognize surrounding objects. The technology of removing hazy is currently being studied in many ways, and a single image based haze removal algorithms are typical. In this paper, we design the hardware for haze removal by estimating the hazy partical map. Proposed hardware architecture is designed to have a cumulative histogram based filter that does not affect the hardware size even if the window size of filter increases. The hardware design is implemented with XILINX's xc7z045-ffg900 as the target board.

Effective machine learning-based haze removal technique using haze-related features (안개관련 특징을 이용한 효과적인 머신러닝 기반 안개제거 기법)

  • Lee, Ju-Hee;Kang, Bong-Soon
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.83-87
    • /
    • 2021
  • In harsh environments such as fog or fine dust, the cameras' detection ability for object recognition may significantly decrease. In order to accurately obtain important information even in bad weather, fog removal algorithms are necessarily required. Research has been conducted in various ways, such as computer vision/data-based fog removal technology. In those techniques, estimating the amount of fog through the input image's depth information is an important procedure. In this paper, a linear model is presented under the assumption that the image dark channel dictionary, saturation ∗ value, and sharpness characteristics are linearly related to depth information. The proposed method of haze removal through a linear model shows the superiority of algorithm performance in quantitative numerical evaluation.

Edge-Preserving and Adaptive Transmission Estimation for Effective Single Image Haze Removal

  • Kim, Jongho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.21-29
    • /
    • 2020
  • This paper presents an effective single image haze removal using edge-preserving and adaptive transmission estimation to enhance the visibility of outdoor images vulnerable to weather and environmental conditions with computational complexity reduction. The conventional methods involve the time-consuming refinement process. The proposed transmission estimation however does not require the refinement, since it preserves the edges effectively, which selects one between the pixel-based dark channel and the patch-based dark channel in the vicinity of edges. Moreover, we propose an adaptive transmission estimation to improve the visual quality particularly in bright areas like sky. Experimental results with various hazy images represent that the proposed method is superior to the conventional methods in both subjective visual quality and computational complexity. The proposed method can be adopted to compose a haze removal module for realtime devices such as mobile devices, digital cameras, autonomous vehicles, and so on as well as PCs that have enough processing resources.