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Abstract

The performance of vision-based intelligent systems, such as self-driving cars and unmanned aerial vehicles, is subject to

weather conditions, notably the frequently encountered haze or fog. As a result, studies on haze removal have garnered

increasing interest from academia and industry. This paper hereby presents a 4K-capable hardware implementation of an

efficient haze removal algorithm with the following two improvements. First, the depth-dependent haze distribution is predicted

using a linear model of four haze-relevant features, where the model parameters are obtained through maximum likelihood

estimates. Second, the approximated quad-decomposition method is adopted to estimate the atmospheric light. Extensive

experimental results then follow to verify the efficacy of the proposed algorithm against well-known benchmark methods. For

real-time processing, this paper also presents a pipelined architecture comprised of customized macros, such as split multipliers,

parallel dividers, and serial dividers. The implementation results demonstrated that the proposed hardware design can handle

DCI 4K videos at 30.8 frames per second.

Index Terms: Field-programmable gate array, Hardware accelerator, Haze removal, Real-time processing

I. INTRODUCTION

The industrial structure has been changing dramatically

due to the Fourth Industrial Revolution (or Industry 4.0),

which dominates the mass surveillance and autonomous

driving industries. Vision-based intelligent systems, such as

self-driving cars and unmanned aerial vehicles, are being

rapidly developed. These life-critical systems adopt high-

level object recognition algorithms to sense their environ-

ment and operate without human involvement. However, as

the performance of these algorithms is subject to weather

conditions, poor visibility resulting from adverse weather

can trigger a cascading failure that may lead to unfortunate

consequences. Therefore, studies on visibility restoration are

essential for autonomous vehicles. In this research direction,

haze removal (or, equivalently, image dehazing) has gar-

nered growing interest from researchers because haze is

seemingly the most frequently encountered weather in prac-

tice. In this context, haze refers to the suspended aerosols in

the atmosphere. The particle-particle collision of these aero-

sols and light photons causes the atmospheric scattering phe-

nomenon, reducing the visibility of captured scenes and

rendering haze removal research relevant to visibility resto-

ration.

Haze removal algorithms are generally based on the sim-

plified Koschmieder model [1], which describes hazy image

formation as follows:

I(x) = J(x)t(x) + A[1 − t(x)], (1)

where I represents the input image, J the scene radiance, t

the transmission map, A the atmospheric light, and x the

pixel coordinates. Assuming that H and W are the image
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height and width, respectively, I, J, and A take on values in

RH × W × 3, whereas t ∈ RH × W. According to (1), recovering

J is an ill-posed problem because I is the only observation.

Thus, early attempts in haze removal solved this problem by

using multiple input images. However, as it is burdensome to

acquire such input data, researchers have shifted their inter-

est to single-image haze removal.

According to a recent systematic review [2], this haze

removal category can be further partitioned into three sub-

categories: image processing, machine learning, and deep

learning. Concerning the first, the dark channel prior (DCP)

proposed by He et al. [3] is typical. The DCP states that out-

door non-sky images exhibit an extremely dark channel,

whose intensity approximates zero in local patches around

all pixels. They then adopted computationally intensive soft

matting to refine the transmission estimate. This method

demonstrated good performance in general, but it substan-

tially prolonged the execution time due to the inherent prob-

lem in soft matting. Also, it is subject to color distortion

when the input image contains a broad sky or shady objects.

These limitations brought a large room for improvements,

and many follow-up studies have been proposed. For exam-

ple, Kim et al. [4] reduced the computational complexity by

using the modified hybrid median filter—equipped with

excellent edge-preserving characteristics—to eliminate the

refinement step. This elimination then favored a fast and

efficient hardware implementation [4,5].

In the second subcategory, a typical work is the color

attenuation prior (CAP) proposed by Zhu et al. [6]. The CAP

was also discovered through extensive observations on out-

door images. It states that the scene depth is closely cor-

related with the difference between the saturation and the

value. Zhu et al. [6] modeled this correlation using a linear

model, whose parameters were estimated utilizing the maxi-

mum likelihood estimates (MLE). The CAP provides a fast

and effective haze removal, albeit with color distortion and

background noise. In a follow-up study, Ngo et al. [7]

addressed these two problems using adaptive weighting and

low-pass filtering.

Finally, deep-learning techniques, such as convolutional

neural networks (CNNs) and generative adversarial networks

(GANs), have also found their applications in haze removal.

The pioneering work of Cai et al. [8] can be taken as a prime

example. They proposed a well-performed three-layer CNN

for estimating the transmission map from a single input

image. In subsequent work, Li et al. [9] employed serial

multiscale mapping to design a CNN that estimates and

refines the transmission map from coarse to fine scales.

Although deep-learning-based haze removal methods gener-

ally deliver satisfactory performance, they are subject to the

domain-shift problem.

This paper presents a machine-learning-based method that

improves the CAP by considering two new haze-relevant

features in addition to the saturation and value. More pre-

cisely, we estimate the scene depth as a linear combination

of local entropy, dark channel, saturation, and value. We then

present a comparative evaluation with other state-of-the-art

benchmark methods to verify the efficacy of the proposed

haze removal algorithm. Furthermore, we demonstrate that

the software implementation per se cannot satisfy real-time

processing requirements. Consequently, we design a 4K-

capable hardware accelerator that can handle 4K videos at

30.8 frames per second (fps).

The rest of this paper is structured as follows. Section 2

explores the haze-relevant features and describes the pro-

posed algorithm in detail. Section 3 presents the comparative

evaluation with benchmark algorithms, and Section 4

demonstrates the necessity of a hardware accelerator for

real-time processing. After that, Section 5 provides a

detailed description of the proposed hardware design and

interprets the implementation results. Finally, Section 6 con-

cludes the paper.

II. PROPOSED METHOD

A. Haze-relevant Features

Under the single image dehazing approach, most algo-

rithms estimate the transmission map in two major steps:

feature extraction and regression. On the one hand, these two

are easily noticeable in image-processing and machine-learn-

ing-based methods. For example, He et al. [3] calculated the

normalized dark channel (feature extraction) and subtracted

it from unity (regression) to estimate the transmission map.

On the other hand, deep learning-based methods usually

introduce the multiscale mapping between these two steps to

improve robustness against spatial variance in the input

image. This observation demonstrates the fundamental impor-

tance of haze-relevant features in haze removal. Recently,

Ngo et al. [10] explored and summarized the haze-relevant

features hitherto reported in the literature. In addition, they

also verified the correlation between those features and the

haze distribution using representative hazy and haze-free

image patches extracted from well-publicized datasets. Some

of the verification results—corresponding to the saturation,

value, dark channel, and local entropy— is illustrated in Fig.

1, where Figs. 1(c) and (d) are adopted from [10]. The nor-

malized histograms demonstrate that feature values follow

the normal distribution, where the means of the hazy and

haze-free distributions are well separated. Also, based on the

degree of overlap, it is observed that the dark channel exhib-

its the strongest correlation with haze distribution, followed

by saturation, value, and local entropy.

Inspired by the work of Zhu et al. [6], we also utilize a lin-

ear model to estimate the transmission map from the satura-
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tion, value, dark channel, and local entropy. The reason for

using two additional features comes from the observing nor-

malized histograms in Fig. 1. It is conspicuous that each fea-

ture correlates with the haze distribution in a different way.

In addition, there are currently no features with a perfect cor-

relation. Saturation, value, dark channel, and local entropy do

not represent the haze distribution in particular circum-

stances. The breakdown of the dark channel in sky regions

or shady objects is a prime example. Therefore, using multi-

ple features allows the mutual compensation for their fail-

ures. The sky region is haze-free in the previous example,

but its all-channel high intensities result in high dark channel

values. Based on the dark channel, the sky region is misclas-

sified as densely hazy instead of haze-free. However, as this

region is also textureless, its haze condition can be recog-

nized using the local entropy. So, this example demonstrates

that the local entropy can compensate for the failure of the

dark channel in the sky region.

B. Scene Depth Estimation

As discussed earlier, we improved the work of Zhu et al.

[6] to estimate the scene depth from the saturation, value,

dark channel, and local entropy using a linear model. This

model is illustrated in (2), where d denotes the scene depth,

f1 saturation, f2 value, f3 dark channel, and f4 local entropy.

The corresponding parameters are θ1, θ2, θ3, θ4, while θ0

represents the bias. The variable ε denotes the model error,

and we assume that it follows the normal distribution with

zero mean and σ2 variance. According to the characteristics

of the normal distribution, the scene depth is also normally

distributed with (θ0 + θ1 f1 + θ2 f2 + θ3 f3 + θ4 f4) mean and

σ
2 variance.

d(x) = θ0 + θ1 f1 + θ2 f2 + θ3 f3 + θ4 f4 + ε(x). (2)

Subsequently, we leverage the MLE technique to deter-

mine the parameters that maximize the likelihood function

[11], wherein the synthetic training dataset is prepared as

follows. We utilize the 500IMG dataset [11] whose 500 con-

stituent haze-free images are collected from free image-shar-

ing services. Then, we employ the enhanced equidistribution

[11] to create the random depth maps, which serve as the

ground-truth references in the training dataset. We also draw

the random atmospheric light—whose values range from 0.8

to 1—from the enhanced equidistribution. Given the scene

depth, we use the following (3) to calculate the transmission

map.

, (3)

where  is normally one as the atmospheric scattering

coefficient. Because the transmission map and atmospheric

light are now available, we substitute these two into (1) to

produce the hazy synthetic images, whose saturation, value,

dark channel, and local entropy serve as the inputs in the

training dataset.

We then apply the mini-batch gradient ascent algorithm

[11] on the training dataset created above to estimate the

parameters. The best estimates that we obtained are θ0 =

−0.5570, θ1 = 1.5210, θ2 = 0.9042, θ3 = 0.7543, and θ4 =

−0.3685. It is worth noting that this parameter estimation

step is performed offline, so it does not affect the run-time of

the proposed method.

C. Atmospheric Light Estimation

Researchers usually adopted the atmospheric light estima-

tion (ALE) method of He et al. [3], which locates the atmo-

spheric light in the “most opaque” region. He et al. [3]

defined those pixels whose dark channel value is within the

top 0.1% of that region. Then, the pixel with the highest

intensity in the red-green-blue color space was selected as

the atmospheric light.

In a different approach, Tarel and Hautiere [12] assumed

that the atmospheric light was pure white if the input image

was correctly white-balanced. However, this ALE method

and even that of He et al. [3] are prone to incorrect estima-

tion when the input image contains bright objects, such as

white cars or light bulbs. The quad-decomposition algorithm

proposed by Park et al. [13] is a good alternative. The input

image is now recursively partitioned into quarters based on

the average luminance. This partition procedure can elimi-

nate bright objects effectively because of their high contrast

to the background. Nevertheless, as the partition requires

many frame buffers, the quad-decomposition algorithm is

inefficient in memory usage. Therefore, Ngo et al. [11]

developed an approximated version that is free of frame buf-

fers. So, in this study, we utilize the approximated quad-

decomposition method to estimate atmospheric light.

After that, we substitute the estimates of transmission map

and atmospheric light into (1) to recover the scene radiance.

t x( ) exp β
sc
d x( )–{ }=

β
sc

Fig. 1. Normalized histograms of four haze-relevant features: (a) saturation,

(b) value, (c) dark channel, and (d) local entropy.
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Finally, we adopt the adaptive tone remapping method of

Cho et al. [14] to post-process the recovered image.

III. Evaluation

This section compares the performance of the proposed

method against four benchmark algorithms, including those

proposed by Tarel and Hautiere [12], Zhu et al. [6], Kim et

al. [4], and Ngo et al. [7]. Henceforth, we refer to these four

as Tarel, Zhu, Kim, and Ngo, respectively. For comparison,

we employ three full-reference metrics: structural similarity

(SSIM) [15], feature similarity extended to color images

(FSIMc) [16], and tone-mapped image quality index (TMQI)

[17]. These metrics take on values ranging from zero to

unity, wherein higher values signify a better performance.

Also, we use two real datasets (I-HAZE [18] and OHAZE

[19]) that comprise 30 and 45 pairs of hazy and haze-free

images, respectively. Table 1 shows the average SSIM,

FSIMc, and TMQI scores on I-HAZE and O-HAZE datasets,

and the best results are displayed in bold. It can be observed

that the proposed algorithm is the best performing under

SSIM and FSIMc, regardless of whether input images are

indoor or outdoor. Additionally, the performance gap

between the proposed method and Zhu is easily noticeable,

attributed to the use of two new haze-relevant features. The

saturation, value, dark channel, and local entropy can com-

pensate for one another, boosting performance when satura-

tion and value fail to represent the haze distribution. So, in

general, the proposed algorithm can be considered superior

to the four benchmark algorithms. Fig. 2 shows hazy images

and corresponding dehazing results obtained from the four

benchmark methods and the proposed algorithm. The first

row shows the dehazing results of a hazy image from the

IVC dataset [20], which consists of 25 real hazy images.

This dataset was excluded from the quantitative evaluation

because it does not contain ground-truth references. In the

second and third rows, haze removal was performed on

images from the I-HAZE and O-HAZE datasets, respec-

tively. It can be observed that Tarel exhibits excellent perfor-

mance, but color distortion arises in the sky region.

Meanwhile, the results of Zhu hinder object recognition due

to excessive haze removal. In the results of Kim, the perfor-

mance is average, and color distortion also arises in the

upper part of the IVC and O-HAZE images. Conversely,

results of Ngo are satisfactory without visually unpleasant

distortion. However, in the IVC and I-HAZE images, the

dehazing power is too strong, leading to the occurrence of

black pixels, as witnessed in the dog’s fur and the bottom of

the sofa. Finally, the proposed method removes haze effec-

tively and well-preserves the dog’s fur color. In addition, in

the I-HAZE and O-HAZE images, the dehazing results are

more satisfactory than those of the benchmark methods.

IV. IMPORTANCE OF HARDWARE IMPLEMENTA-

TION

For an image processing algorithm to be deployed in real-

world systems, it should handle image data at a minimum

rate of 25 fps or greater, depending on whether the color

encoding standard is PAL or NTSC [21]. Therefore, we con-

ducted a run-time comparison between several haze removal

Table 1. Average structural similarity (SSIM), feature similarity extended to

color images (FSIMc), and tone-mapped image quality index (TMQI) scores

on I-HAZE and O-HAZE. The Best results are displayed in bold.

Dataset

Method

I-HAZE O-HAZE

SSIM FSIMc TMQI SSIM FSIMc TMQI

Tarel 0.7200 0.8055 0.7740 0.7263 0.7733 0.8416

Zhu 0.6864 0.8252 0.7512 0.6647 0.7738 0.8118

Kim 0.6424 0.7879 0.7026 0.4702 0.6869 0.6509

Ngo 0.7600 0.8482 0.7892 0.7322 0.8219 0.8935

Proposed 0.7642 0.8658 0.7878 0.7329 0.8920 0.8351

Fig. 2. Qualitative comparison with other haze removal methods on the IVC, I-HAZE, and O-HAZE datasets.
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algorithms and tabulated the results in Table 2. The simula-

tion environment is MATLAB R2019a , running on a host

computer with Intel Core i9-9900K CPU, NVIDIA TITAN

RTX GPU, and 64GB RAM. It can be observed from Table 3

that none of the algorithms can handle images in real-time.

This finding suggests that hardware implementation is essen-

tial for coping well with the real-time processing requirement.

V. HARDWARE IMPLEMENTATION FOR 

REAL-TIME PROCESSING

Fig. 3 presents the hardware architecture of the proposed

method, which can be partitioned into memories, logic cir-

cuits, and arithmetic circuits. Two 1024 × 32-bit SPRAMs

and three 256×8-bit SPRAMs are used for the atmospheric

light estimation [11] and adaptive tone remapping [14].

Other memories are used as line memories for 5 × 5 filtering

operations. So, it takes time seven image lines from input to

output. In addition, logic circuits consist of 10 modules. The

system controller in logic circuits is responsible for input-

output operations of the image/video data. Saturation, value,

dark channel, and local entropy are calculated in parallel in

the 4-feature module. Furthermore, to improve the maximum

frequency, we utilized split multipliers for large multiplica-

tions where operands’ word-length is greater than 16 bits.

Table 3 summarizes the hardware implementation result in

terms of slice registers, LUTs, RAM36E1s, and maximum

frequency. Slice registers and LUTs represent the logic areas,

whereas RAM36E1s represents the memory area. The pro-

posed design used 64,918 registers, 58,126 LUTs, and 58

RAM36E1s, respectively. The fastest attainable frequency

was 272.48 MHz. This information can be then used to

obtain the maximum processing speed (MPS):

, (4)

where fmax denotes the maximum frequency in Table 3; W and

H denote the input image’s width and height, respectively; and

HB and VB denote the horizontal and vertical blank periods.

The hardware was implemented to minimize the number of

blank periods corresponding to one pixel and one image line

to increase the MPS. It demonstrates that the proposed design

can process the DCI 4K video at 30.8 fps, satisfying the real-

time processing requirement of 25 fps or greater.

Fig. 4 depicts the C/C++ platform and verification board for

the real-world execution. The top and middle thirds of Fig. 4

belong to the platform, whereas the bottom third depicts the

system-on-a-chip (SoC) board. Moreover, the upper part of the

platform shows side-by-side input-output data for ease of per-

formance verification. The platform control panel is responsi-

ble for providing input data to the SoC board.

MPS
f
max

W HB+( ) H VB+( )⋅
-----------------------------------------------=

Table 2. Run-time comparison of haze removal algorithms (in seconds) for

three image sizes.

Size

Method
640 × 480 1024 × 768 4096 × 2160

He 12.64 32.37 470.21

Tarel 0.28 0.76 9.02

Zhu 0.22 0.55 6.39

Kim 0.16 0.43 4.81

Ngo 0.17 0.44 5.22

Proposed 0.93 2.32 26.95

Fig. 3. Hardware architecture of the proposed haze removal algorithm.

Table 3. Hardware implementation result of the proposed hardware design.

Xilinx Vivado 2019.1

Device Xc7z045-2ffg900

Slice Logic Utilization Available Used Utilization

Slice Register(#) 437,200 64,918 14.85%

Slice LUT(#) 218,600 58,126 26.59%

RAM36E1s 545 58 10.64%

Minimum Period 3.67 ns

Maximum Frequency 272.48 MHz

* The EDA tool was supported by the IC Design Education Center

(IDEC), Korea.

Fig. 4. Hardware verification using a system-on-a-chip evaluation board.
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Meanwhile, the algorithm control provides a convenient

graphical user interface for configuring the hardware design

running on the board. This C/C++ platform is a convenient

means for verifying the real-time processing of the proposed

hardware design.

VI. CONCLUSION

A high-performance haze removal algorithm and its corre-

sponding 4K-capable hardware accelerator were presented in

this paper. We proposed using two new haze-relevant fea-

tures (dark channel and local entropy) to estimate the trans-

mission map, based on the observation that they can

effectively compensate for the failures of the CAP. In addi-

tion, we adopted a frame-buffer-free version of the quad-

decomposition algorithm to estimate atmospheric light to

reduce hardware resources. We then provided extensive

experimental results to demonstrate the superiority of the

proposed method over benchmark algorithms. We also con-

ducted a run-time comparison to show that the software

implementation per se was insufficient for real-time process-

ing. Therefore, we presented a 4K-capable hardware design

that can handle DCI 4K videos at 30.8 fps, rendering the

proposed algorithm highly relevant for high quality, high-

speed real-time systems, such as autonomous cars and drones.
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