• 제목/요약/키워드: Hazardous Chemicals

검색결과 350건 처리시간 0.028초

Assessment of Chemical Risks in Moroccan Medical Biology Laboratories in Accordance with the CLP Regulation

  • Mourry, Ghita E.;Alami, Rachid;Elyadini, Adil;Hajjaji, Souad El;kabba, Saad El;Zouhdi, Mimoun
    • Safety and Health at Work
    • /
    • 제11권2호
    • /
    • pp.193-198
    • /
    • 2020
  • Background: Medical laboratory workers are frequently exposed to a wide range of chemicals. This exposure can have adverse effects on their health. Furthermore, a knowledge lack of the chemical risk increases the likelihood of exposure. The chemical risk assessment reduces the risk of exposure to hazardous chemicals and therefore, guarantees health and safety of the workers. Method: The chemical risk assessment was conducted using a modified INRS method, according to the new CLP Regulation, of 11 unit laboratories in a Moroccan medical laboratory. Observation of each workstation and analysis of safety data sheets are key tools in this study. Results: A total of 144 substances and reagents that could affect the health of the analytical technicians were identified. Among these products, 17% are concerned by the low priority risk score, with 55% concerned by the average priority risk score and 28% concerned by the high priority risk score. This study also enabled to better identify the chemical agents that have restrictive occupational exposure limit value and controls were conducted to this effect. On the basis of the results obtained, several corrective and preventive measures have been proposed and implemented. Conclusion: Risk assessment is essential to ensure the health and safety of workers and to meet regulatory requirements. It enables to identify all the risky manipulations and to adopt appropriate preventive measures. However, it is not a one-time activity but it must be continuous in order to master the changes and thus ensure the best safety of all.

Carassius auratus(goldfish)를 이용한 Carbofuran의 단기간 생물농축계수의 측정 (Determination of Short-term Bioconcentration Factor on Carbofuran in Carassius auratus (goldfish))

  • 민경진;배영규;차춘근;박천만;강회양
    • 한국환경보건학회지
    • /
    • 제22권4호
    • /
    • pp.25-32
    • /
    • 1996
  • The Bioconcentration factor(BCF) is used as an important criterion in the risk assessment of environmental contaminants. Also it can be used as indicator of biomagnification of environmentally hazardous chemicals through food-chain as well as a tool for ranking the bioconcentration potential of the chemicals in the environment. This paper reports the measured BCF value on carbofuran in Carassius auratus(goldfish), under steady state, and examined corelation between the BCF value and the depuration rate constant. Carassius auratus(goldfish) was chosen as test organism and test periods were 1-day, 3-day and 5-day. Experimental concentrations were 0.05, 0.10 and 0.50 ppm. Carbofuran in fish tissue and in test water was extracted with n-hexane and acetonitril. GC-ECD was used to detect and quantitate carbofuran. The depuration rate of carbofuran from the whole body of goldfish is determined over the 24-h period after treatment. The obtained results were as follows: 1. It was possible to determine short term BCFs of carbofuran through relatively simple procedure in environmental concentrations. 2. $BCF_1$ of carbofuran in concentration of 0.05, 0.10 and 0.50 ppm were 1.66, 1.64 0.61, $BCF_3$ were 2.08, 2.14, 0.66 and $BCF_5$ were 2.21, 2.57, 0.86, respectively. 3. Carbofuran concentration in fish extract was increased as increasing test concentration and prolonging test period, but $BCF_s$ in concentration of 0.50 ppm was greately decreased. 4. Determined deputation rate constants of carbofuran in concentration of 0.05, 0.10, 0.50 ppm were 0.076, 0.082 and 0.089, respectively. 5. It is considered that great decrease of $BCF_s$ in concentration of 0.50 ppm is due to high water solubility and stability of carbofuran in testwater. 6. It is suggested that low BCF of carbofuran is due to its relatively high water solubility and depuration rate, compared to BPMC, carbaryl and chlorothalonil.

  • PDF

나노위해성 관리를 위한 나노물질 주요 배출원 파악 (Investigation on the Main Exposure Sources of Nanomaterials for Nanohazards Assessment)

  • 김영훈;박준수;김휘로;이정진;배은주;이수승;곽병규;최경희;박광식;이종협
    • Environmental Analysis Health and Toxicology
    • /
    • 제23권4호
    • /
    • pp.257-265
    • /
    • 2008
  • Nanotechnology is emerging as one of the key technologies of the 21 st century and is expected to enable one to broaden the applicability across a wide range of sectors that can benefit public and improve industrial competitiveness. Already, consumer products containing nanomaterials are available in markets including coatings, computers, clothing, cosmetics, sports equipment and medical devices. Recently, Institute of Occupational Medicine in UK reported an occupational hygiene review for nanoparticles in the viewpoint of nanotoxicity. They reported that the exposure control is very important issues in workplace for exposure assessment, but no proper methods are available to measure the extent of exposures to nanoparticles in the workplace. Therefore, for the estimation of exposure of nanomaterials, we have to approach the material-balance methodology, which similarly carried out in TRI (toxic release inventory) for hazardous chemicals. In order to use this methodology, the exposure source of nanomaterials should be determined firstly. Therefore, herein we investigated the main sources and processes for the exposure to nanomaterals by conducting the survey. The results could be used to define and assess nanohazard sources.

외국 노출량 산정 프로그램(ECETOC TRA)의 국내 적용을 위한 입력변수의 보정에 관한 연구 (Evaluation of the Application of a European Chemical Risk Assessment Tool in Korea)

  • 이종한;이권섭;홍문기
    • 한국산업보건학회지
    • /
    • 제22권3호
    • /
    • pp.191-199
    • /
    • 2012
  • Objectives: The study aim was to evaluate the application of a chemical exposure assessment tool for the Korean workplace. The Ministry of Employment and Labor in Korea (KMOEL) introduced the need for workplace risk assessments in 2011, requiring the Korean chemical industry to consider both domestic and international chemical regulation policies (e.g., estimations of exposure scenarios). Exposure scenarios are required in the European Union as part of material safety data sheets (MSDS) under the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) system. Methods: Although many programs for the estimation of exposure have been developed worldwide, to date there is no standard for the Korean workplace. To develop programs suitable for the Korean workplace, we examined the applicability of the European Center for Ecotoxicology and Toxicology of Chemicals target risk assessment (ECETOC TRA), which is recommended by the European Chemical Agency (ECHA). Results: To investigate the applicability of the ECETOC TRA to Korean industry, this study simulated 15 industrial processes. The predicted respiratory exposures for four processes using origin input parameters were underestimated compared to the measured respiratory exposure. Using calibrated input parameters, results for two processes were underestimated compared to the measured respiratory exposure. This result suggests that the use of calibrated input parameters reduces the differences between predicted and measured respiratory exposure. Conclusions: we developed applicable exposure estimating method by modifying the ECETOC TRA program; one suggested the development of exposure estimating program that explains Korea domestic workplace exposure scenario.This study will support the introduction of exposure scenario in MSDS system and protect health of worker from hazardous chemical.

Can prosthetic limbs made too quickly cause kidney damage?: a pilot study

  • Petrofsky, Jerrold S.;Browne, Mary;Jamshidi, Mahyar;Libo-on, Anthony;Lee, Haneul
    • Physical Therapy Rehabilitation Science
    • /
    • 제3권2호
    • /
    • pp.119-124
    • /
    • 2014
  • Objective: The use of chemicals for building prosthetic sockets present the possibility of being hazardous and unsafe due to off-gassing. The purpose of the present study was to investigate if freshly made materials used in prosthetic sockets causes off-gassing that would penetrate the skin and cause damage to the kidneys or blood. Design: Cross-sectional study. Methods: In this research, the off-gassing effects during the initial curing process of styrene monomer, vinyl ester resin, epoxy methacrylate resin, benzene-1, 3-dimethaneamine, trimethylhexanedlamine, and paratertiarybutylphenol were analyzed. Acid detection strips were placed inside newly fabricated mock-prosthetic sockets and left overnight in a closed environment to find out if acid was present in the invisible fumes. The plastic was worn by 9 subjects and urinalysis was made after 48 hours to test for any kidney or blood toxicity of the resins. Results: After wearing the plastic cuff for 48 hours, the ratio of protein to creatinine in the urine was raised to an abnormal level in five out of nine subjects. Four out of the nine subjects showed normal protein to creatinine ratios after wearing the device. The results showed that damage to the kidney occurred from wearing the resins after curing in half of the subjects. Conclusions: It is very important to conduct patient intakes which includes the assessment of renal function. Off-gassing in vented chambers may be needed to protect both prosthetists and patients.

순간적인 화학물질 누출에 따른 초기 피해영향 범위 산정을 위한 분산모델 연구 (Dispersion Model of Initial Consequence Analysis for Instantaneous Chemical Release)

  • 손태은;이의주
    • 한국안전학회지
    • /
    • 제37권2호
    • /
    • pp.1-9
    • /
    • 2022
  • Most factories deal with toxic or flammable chemicals in their industrial processes. These hazardous substances pose a risk of leakage due to accidents, such as fire and explosion. In the event of chemical release, massive casualties and property damage can result; hence, quantitative risk prediction and assessment are necessary. Several methods are available for evaluating chemical dispersion in the atmosphere, and most analyses are considered neutral in dispersion models and under far-field wind condition. The foregoing assumption renders a model valid only after a considerable time has elapsed from the moment chemicals are released or dispersed from a source. Hence, an initial dispersion model is required to assess risk quantitatively and predict the extent of damage because the most dangerous locations are those near a leak source. In this study, the dispersion model for initial consequence analysis was developed with three-dimensional unsteady advective diffusion equation. In this expression, instantaneous leakage is assumed as a puff, and wind velocity is considered as a coordinate transform in the solution. To minimize the buoyant force, ethane is used as leaked fuel, and two different diffusion coefficients are introduced. The calculated concentration field with a molecular diffusion coefficient shows a moving circular iso-line in the horizontal plane. The maximum concentration decreases as time progresses and distance increases. In the case of using a coefficient for turbulent diffusion, the dispersion along the wind velocity direction is enhanced, and an elliptic iso-contour line is found. The result yielded by a widely used commercial program, ALOHA, was compared with the end point of the lower explosion limit. In the future, we plan to build a more accurate and general initial risk assessment model by considering the turbulence diffusion and buoyancy effect on dispersion.

Analyzing Safety Culture in Sri Lankan Industrial Chemical Laboratories

  • Samaranayake, Ashen I.;Nishadya, Sajani;Jayasundara, Udaya K.
    • Safety and Health at Work
    • /
    • 제13권1호
    • /
    • pp.86-92
    • /
    • 2022
  • Background: A laboratory where chemicals are handled can be considered a hazardous environment, and hence, prudent practices should be strictly enforced. If not, deadly accidents and incidents could occur due to a lack of safety practices and poor safety culture. The purpose of this study is to analyze the existing safety culture and propose potential recommendations to enhance the level of safety education in the chemical laboratories in the Western Province of Sri Lanka. Methods: A survey questionnaire was administered among the laboratory supervisors of the chemical laboratories in the Western Province of Sri Lanka in 2019. Results: Even though 80 surveys were distributed among prospective participants, only 46 surveys were submitted, which is 58% of the response rate. Most of the individuals who participated in the survey were females below 35 years old, and approximately 96% of the participants had at least one year of working experience in the same laboratory setting. The majority considered safety as an important factor that requires further improvements with third-party safety inspections; however, 54% of the respondents mentioned that those inspections were conducted by the employees from their laboratory. Conclusion: From the study, it has been discovered that employees have knowledge of safety culture to a certain extent. A significant percentage (83%) of participants believed that further safety measures are required for a safer laboratory. However, the study revealed that the attitudes of some employees should be changed to have a better safety culture. Hence the authors would like to suggest having annual training sessions and well-formulated safety policies to improve the safety culture.

위험도 평가를 통한 사고대비물질별 규정수량 고찰 (Consideration on the Regulated Quantity of Preparation for Accidents by Risk Assessment)

  • 안광재;김정욱;이근원;정승호
    • Korean Chemical Engineering Research
    • /
    • 제60권4호
    • /
    • pp.506-511
    • /
    • 2022
  • 화학물질관리법에서 장외영향평가서 및 위해관리계획서를 화학사고예방관리계획서로 일원화하는 제도가 시행되었다. 화학사고예방관리계획서에서 다루는 유해화학물질 중 사고대비물질은 화학사고의 발생 가능성이 높거나 화학사고가 발생한 경우에 그 피해 규모가 클 것으로 우려되는 화학물질로서 지정하고 있다. 본 연구에서는 사고대비물질별 규정수량 기준에 따른 위험도를 비교하고자 상위/하위 규정수량이 비슷한 화학물질을 특정하여 동일한 사고 시나리오를 선정하고 위험도 평가를 실시하였다. 연구대상물질은 암모니아, 염화수소, 이황화탄소, 벤젠 등 총 4종의 물질을 선정하였으며, DNV 사의 정량적 위험성 평가 프로그램인 Safeti 8.0을 활용하여 위험도를 비교 분석하였다. 그 결과, 비슷한 상위/하위규정수량임에도 불구하고 상대적으로 높은 위험도를 가지고 있는 물질을 확인할 수 있었다.

반응 위험성분석 및 사고방지를 위한 스마트 합성경로 탐색시스템 (Smart Synthetic Path Search System for Prevention of Hazardous Chemical Accidents and Analysis of Reaction Risk)

  • 정준수;김창완;곽동호;신동일
    • Korean Chemical Engineering Research
    • /
    • 제57권6호
    • /
    • pp.781-789
    • /
    • 2019
  • 연구실 실험, 파일럿 플랜트 및 반응기 운전 중 화학물질에 의한 안전사고가 발생하고 있다. 합성 실험을 시작하기전 사고예방을 위해 관련 정보들을 찾아볼 필요가 있으며, 공정설계 단계에서도 반응 폭주 예방을 위한 반응정보의 확보는 필수적이다. 합성반응 관련 정보는 인터넷을 포함해 다양한 source가 존재하지만, 검색에 오랜 시간이 걸리고, 합성법마다 사용되는 물질도 달라 적정경로 선택의 어려움이 있다. 연구자들의 합성경로 검색시간단축과 합성 시 존재할 수 있는 위험성 및 중간생성물질들의 확인에 도움을 주고자 본 연구는 스마트 합성경로 탐색시스템을 제안하였다. 제안한 탐색시스템은 Python 패키지인 Selenium을 사용한 Web scraping 및 Web crawling을 통해 인터넷에 존재하는 정보를 수집하여 DB를 자동으로 갱신한다. 경로 탐색 알고리즘은 depth-first search에 기반하여 목표 물질을 기준으로 탐색을 진행하고, 유해화학물질 등급, 수율 등을 구분하여, 제한된 경로 단계 수치내에 있는 모든 합성 경로를 제안한다. 또한 각자의 연구 목적에 맞게 연구원들이 가진 비공개 데이터를 형식을 맞춰 DB에 등록하여 확장할 수 있다. 시스템은 차후에 무료 사용이 가능하도록 open source로 공개할 예정이다. 개발 시스템은 연구자들이 제안된 경로를 참고하여 더 안전한 반응 방법을 찾고, 사고의 예방에도 도움을 줄 것으로 기대된다.

SEMI S6를 적용한 CVD 설비의 폭발분위기 조성 가능성 분석 (Explosion Likelihood Investigation of Facility Using CVD Equipment Using SEMI S6)

  • 이미정;서대원;이성희;이동건;배세종;백종배
    • Korean Chemical Engineering Research
    • /
    • 제61권1호
    • /
    • pp.62-67
    • /
    • 2023
  • 반도체, 디스플레이 등 IT(Information Technology) 제품 수요 증가로 관련 산업이 확대되고 있다. 이는 생산설비 증설과 화학물질 사용 증가로 이어지며 화재·폭발의 위험성에도 영향을 미치고 있다. 이러한 위험요인에 대해 정부는 오래전부터 인화성 물질을 제조·사용·취급하는 장소의 사고 예방을 위하여 산업안전보건법 및 KS 기준에 따라 폭발위험 장소로 설정하여 관리토록 하고 있다. 그러나, 폭발위험장소를 설정할 때, 중요한 요소인 환기량을 고려하지 않아 실질적인 폭발분위기 조성 가능성을 예측하기는 쉽지 않다. 이 연구에서는 디스플레이 산업에서 주요 공정인 CVD(Chemical Vapor Deposition) 설비에 SEMI S6 Exhaust Ventilation Test 방법을 적용하여 위험한 설비의 환기 성능을 평가하고, 폭발분위기 조성 가능성을 확인하였다. 그 결과, 가상의 시나리오 내에서 환기 성능이 SEMI S6에서 규정한 기준에 적합하였고, 폭발분위기가 조성될 가능성이 낮음을 확인하였다. 따라서, KS 규격뿐만 아니라 공학적 기법으로 폭발분위기의 형성 여부를 예측한 연구 결과를 통해 합리적이고 경제적인 사고 예방에 도움이 될 것으로 기대된다.