• Title/Summary/Keyword: Hazard analysis

Search Result 2,729, Processing Time 0.04 seconds

A Study on Microbiological Hazards in Sterilization Processing of Pteridium aquilinum and Platycodon grandiflorum (고사리와 도라지 제조공정 중 살균공정에 대한 미생물학적 위해 요소에 관한 연구)

  • Choi, Seon-Hyo;Kwon, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.646-653
    • /
    • 2016
  • This study performed a microbiological hazard analysis, which is required for the application of HACCP (Hazard Analysis Critical Control Point) system to Pteridium aquilinum and Platycodon grandiflorum. The manufacturing process was made by referring to the typical manufacturing process. Based on microbiological hazard analysis, grandiflorum root contained $6.2{\times}10^3CFU/g$ of bacteria, which has the largest amount of bacteria among the agricultural materials. On the other hand, microbiological hazard analysis of the raw materials and after the disinfecting process of confectionery showed a safe result. A microorganism test of the manufacturing environment and workers suggests that the microbiological hazard should be reduced through systematic cleaning, disinfection and accompanied by personal hygiene based on hygiene education for workers.

Analysis of Slope Hazard Triggering Factors through Field Investigation in Korea Over the Past Four Years (최근 4년간 국내 사면재해 현장조사를 통한 유발인자 분석)

  • Jun, Kyoung-Jea;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.47-58
    • /
    • 2015
  • Triggering rainfall and geologic conditions with the state of slope hazard were investigated based on the field investigation and collected data on the slope hazard during the period between 2011 and 2014 in Korea. Analysis results showed that most of slope hazards occurred in metamorphic rock and debris flow was the most frequent type of slope hazard. Slope hazard increased when the higher monthly mean rainfall was recorded. However, most of slope hazard occurred when certain time elapsed after the moment of maximum hourly rainfall. Finally, more than one month of long-term rainfall was shown to be related to the frequency of slope hazard in the period.

Reevaluation of Seismic Fragility Parameters of Nuclear Power Plant Components Considering Uniform Hazard Spectrum

  • Park, In-Kil;Choun, Young-Sun;Seo, Jeong-Moon;Yun, Kwan-Hee
    • Nuclear Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.586-595
    • /
    • 2002
  • The Seismic probabilistic risk assessment (SPRA) or seismic margin assessment (SMA) have been used for the seismic safety evaluation of nuclear power plant structures and equipments. For the SPRA or SMA, the reference response spectrum should be defined. The site-specific median spectrum has been generally used for the seismic fragility analysis of structures and equipments in a Korean nuclear power plant Since the site-specific spectrum has been developed based on the peak ground motion parameter, the site-specific response spectrum does not represent the same probability of exceedance over the entire frequency range of interest. The uniform hazard spectrum is more appropriate to be used in seismic probabilistic risk assessment than the site- specific spectrum. A method for modifying the seismic fragility parameters that are calculated based on the site-specific median spectrum is described. This simple method was developed to incorporate the effects of the uniform hazard spectrum. The seismic fragility parameters of typical NPP components are modified using the uniform hazard spectrum. The modification factor is used to modify the original fragility parameters. An example uniform hazard spectrum is developed using the available seismic hazard data for the Korean nuclear power plant (NPP) site. This uniform hazard spectrum is used for the modification of fragility parameters.

Analysis of Uniform Hazard Spectra for Metropolises in the Korean Peninsula (국내 주요 광역 도시에 대한 등재해도 스펙트럼 분석)

  • Rhee, Hyun-Me;Kim, Min Kyu;Sheen, Dong-Hoon;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 2013
  • The uniform hazard spectra for seven major cities in Korea, Seoul, Daejeon, Daegu, Busan, Gwangju, Ulsan, and Inchon are suggested. Probabilistic seismic hazard analyses were performed using the attenuation equations derived from seismology research in Korea since 2000 and the seismotectonic models selected by expert assessment. For the estimation of the uniform hazard spectra, the seismic hazard curves for several frequencies and PGAs were calculated by using the spectral attenuation equations. The seismic hazards (annual exceedance probability) calculated for the 7 metropolises ranged from about $1.4305{\times}0^{-4}/yr$ to $1.7523{\times}10^{-4}/yr$ and averaged out at about $1.5902{\times}10^{-4}/yr$ with a log standard deviation of about 0.085 at 0.2 g. The uniform hazard spectra with recurrence intervals of 500, 1000, and 2500 years estimated by using the calculated mean seismic hazard on the frequencies presented peak values at 10.0 Hz, and the log standard deviations of the difference between metropolises ranged from about 0.013 to 0.209. In view of the insignificant difference between the estimated uniform hazard spectra obtained for the considered metropolises, the mean uniform hazard spectrum was estimated. This mean uniform hazard spectrum is expected to be used as input seismic response spectrum for rock sites in Korea.

New fuzzy method in choosing Ground Motion Prediction Equation (GMPE) in probabilistic seismic hazard analysis

  • Mahmoudi, Mostafa;Shayanfar, MohsenAli;Barkhordari, Mohammad Ali;Jahani, Ehsan
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.389-408
    • /
    • 2016
  • Recently, seismic hazard analysis has become a very significant issue. New systems and available data have been also developed that could help scientists to explain the earthquakes phenomena and its physics. Scientists have begun to accept the role of uncertainty in earthquake issues and seismic hazard analysis. However, handling the existing uncertainty is still an important problem and lack of data causes difficulties in precisely quantifying uncertainty. Ground Motion Prediction Equation (GMPE) values are usually obtained in a statistical method: regression analysis. Each of these GMPEs uses the preliminary data of the selected earthquake. In this paper, a new fuzzy method was proposed to select suitable GMPE at every intensity (earthquake magnitude) and distance (site distance to fault) according to preliminary data aggregation in their area using ${\alpha}$ cut. The results showed that the use of this method as a GMPE could make a significant difference in probabilistic seismic hazard analysis (PSHA) results instead of selecting one equation or using logic tree. Also, a practical example of this new method was described in Iran as one of the world's earthquake-prone areas.

The development of automatic system using multimodel in hazard analysis (위험성 분석에서의 다중모델을 이용한 자동화 시스템의 개발)

  • Kang Kyung Wook;Kang Byung Kwan;Suh Jung Chul;Yoon En Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.87-94
    • /
    • 1997
  • There are many kinds of complicated equipments in the chemical plants. So the chemical plants have high possibility of accidents. Hazard analysis is one of the basic tasks to ensure the safety of chemical plants. However, it has many shortcomings. To overcome the problems, there have been attempts to automate this work by utilizing computer technology, particularly knowledge-based technique. However, many of the past approaches are lacking in properties: safeguard consideration, accident diversity, cause and consequence diversity, pathway leading to accidents, and various hazard analysis reasoning. Therefore, in this study, three analysis algorithms were proposed using multimodel approach, and a hazard analysis system, AHA, was developed on G2. The case study was solved with AHA system successfully.

  • PDF

Sensitivity Analysis According to Fault Parameters for Probabilistic Tsunami Hazard Curves (단층 파라미터에 따른 확률론적 지진해일 재해곡선의 민감도 분석)

  • Jho, Myeong Hwan;Kim, Gun Hyeong;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.368-378
    • /
    • 2019
  • Logic trees for probabilistic tsunami hazard assessment include numerous variables to take various uncertainty on earthquake generation into consideration. Results from the hazard assessment vary in different way as more variables are considered in the logic tree. This study is conducted to estimate the effects of various scaling laws and fault parameters on tsunami hazard at the nearshore of Busan. Active fault parameters, such as strike angle, dip angle and asperity, are adjusted in the modelling of tsunami propagation, and the numerical results are used in the sensitivity analysis. The influence of strike angle to tsunami hazard is not as much significant as it is expected, instead, dip angle and asperity show a considerable impact to tsunami hazard assessment. It is shown that the dip angle and the asperity which determine the initial wave form are more important than the strike angle for the assessment of tsunami hazard in the East Sea.

Earthquake hazard and risk assessment of a typical Natural Gas Combined Cycle Power Plant (NGCCPP) control building

  • A. Can Zulfikar;Seyhan Okuyan Akcan;Ali Yesilyurt;Murat Eroz;Tolga Cimili
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.581-591
    • /
    • 2023
  • North Anatolian Fault Zone is tectonically active with recent earthquakes (Mw7.6 1999-Kocaeli and Mw7.2 1999-Düzce earthquakes) and it passes through Marmara region, which is highly industrialized, densely populated and economically important part of Turkey. Many power plants, located in Marmara region, are exposed to high seismic hazard. In this study, open source OpenQuake software has been used for the probabilistic earthquake hazard analysis of Marmara region and risk assessment for the specified energy facility. The SHARE project seismic zonation model has been used in the analysis with the regional sources, NGA GMPEs and site model logic trees. The earthquake hazard results have been compared with the former and existing earthquake resistant design regulations in Turkey, TSC 2007 and TBSCD 2018. In the scope of the study, the seismic hazard assessment for a typical natural gas combined cycle power plant located in Marmara region has been achieved. The seismic risk assessment has been accomplished for a typical control building located in the power plant using obtained seismic hazard results. The structural and non-structural fragility functions and a consequence model have been used in the seismic risk assessment. Based on the seismic hazard level with a 2% probability of exceedance in 50 years, considered for especially these type of critical structures, the ratios of structural and non-structural loss to the total building cost were obtained as 8.8% and 45.7%, respectively. The results of the study enable the practical seismic risk assessment of the critical facility located on different regions.

PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR NUCLEAR POWER PLANTS - CURRENT PRACTICE FROM A EUROPEAN PERSPECTIVE

  • Klugel, Jens-Uwe
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1243-1254
    • /
    • 2009
  • The paper discusses the methodology and the use of probabilistic seismic hazard analysis (PSHA) for nuclear power plants from a European perspective. The increasing importance of risk-informed approaches in the nuclear oversight process observed in many countries has contributed to increasing attention to PSHA methods. Nevertheless significant differences with respect to the methodology of PSHA are observed in Europe. The paper gives an overview on actual projects and discusses the differences in the PSHA-methodology applied in different European countries. These differences are largely related to different approaches used for the treatment of uncertainties and to the use of experts. The development of a probabilistic scenario-based approach is identified as a meaningful alternative to the development of uniform hazard spectra or uniform confidence spectra.

A Study on Hazard Analysis and Risk Assessment of Railway Signal System Using FTA/ETA Method (FTA/ETA 기법을 이용한 철도신호시스템의 위험 분석 및 위험성 평가에 관한 연구)

  • 백영구;박영수;이재훈;이기서
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.473-480
    • /
    • 2002
  • In this paper, it was proposed that hazard analysis and risk assessment about railway signal systems using FTA(Fault Tree Analysis) and ETA(Event Tree Analysis) one of the reliability analysis methods executed and output value based on the hazard baseline of CENELEC and EC 61508 producted, and also the SIL(Safety Integrity Level)/THR(Tolerable Hazard Rate) about the system set. On the basis of this principle, more systematic standardizations are required to operate railway system and in the future, we hope that safety and reliability of signal equipment will be better improved.

  • PDF