• Title/Summary/Keyword: Hastelloy

Search Result 79, Processing Time 0.025 seconds

A unhomogeneity of critical current at the long length coated conductors (Coated conductor에서 임계전류의 불균일)

  • Lee, Nam-Jin;Oh, Sang-Soo;Kim, Ho-Sup;Ha, Dong-Woo;Ha, Hong-Soo;Ko, Rock-Kil;Kim, Tae-Hyung;Moon, Seung-Hyun;Youm, Do-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.1-2
    • /
    • 2009
  • The high critical current ($I_c$, A) of SmBCO coated conductor in a magnetic field, the high production rate and the high material yield are promising for applications. The inhomogeneity of Ie at the long length coated conduct is very important problem for electric application. So we researched the reason of inhomogeneity of $I_c$ at long length tape prepared by batch type co-evaporation system called by EDDC. The long length SmBCO coated conductors were developed on $LaMnO_3/IBAD-MgO/Y_2O_3/Al_2O_3$/Hastelloy C276 template. The distribution of $I_c$ are from 0 to 397 A/cm at 77 K and self field. We have studied the microstructures of these films by using SEM, EDS and X-ray diffraction. The XRD and composition by EDS results of SmBCO film reveals subtle difference. But, the microscopic observation by SEM show the microcrack at the sample with low $I_c$.

  • PDF

Microstructural Evaluation and High Temperature Mechanical Properties of Ni-22Cr-18Fe-9Mo ODS Alloy (Ni-22Cr-18Fe-9Mo계 ODS 합금의 미세조직 및 고온인장 특성 평가)

  • Jeong, Seok-Hoan;Kang, Suk-Hoon;Han, Chang-Hee;Kim, Tae-Kyu;Kim, Do-Hyang;Jang, Jin-Sung
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.456-462
    • /
    • 2011
  • Yttrium oxide is one of the most thermo-dynamically stable materials, so that it is generally used as a dispersoid in many kinds of dispersion strengthed alloys. In this study, a nickel-base superalloy is strengthened by dispersion of yttrium oxide particles. Elemental powders with the composition of Ni-22Cr-18Fe-9Mo were mechanically alloyed(M.A.) with 0.6 wt% $Y_2O_3$. The MA powders were then HIP(hot isotactic press)ed and hot rolled. Most oxide particles in Ni-22Cr-18Fe-9Mo base ODS alloy were found to be Y-Ti-O type. The oxide particles were uniformly dispersed in the matrix and also on the grain boundaries. Tensile test results show that the yield strength and ultimate tensile strength of ODS alloy specimens were 1.2~1.7 times higher than those of the conventional $Hastelloy^{TM}$ X(R), which has the same chemical compositions with ODS alloy specimens except the oxide particles.

DESTRUCTION OF HUMIC MATTERS AND AMMONIA IN THE LANDFILL LEACHATE BY SUPERCRITICAL WATER OXIDATION

  • Kim, Y.K.;Ahn, J.S.;Leung, W.
    • Environmental Engineering Research
    • /
    • v.11 no.6
    • /
    • pp.311-317
    • /
    • 2006
  • Feasibility of destroying synthetic and actual leachate containing humic acids and ammonia compounds by supercritical water oxidation (SCWO) was evaluated. In this study, destruction efficiencies of humic acids and ammonia respectively were investigated at various reaction temperatures and residence times under pressure a supercritical pressure (280 atm). To lower reaction temperature, chemical oxidants were used. The experiment was carried out in a cylindrical batch reactor made of Hastelloy C-276 that can withstand high temperature and pressure. Concentrations of humic acids and ammonia were measured using a $COD_{Cr}$ method and an ammonia selective electrode, respectively. The optimal destructive condition of humic acids in the presence of stoichiometric oxygen(air) was 3 min at $380^{\circ}C$, but the temperature could be lowered to subcritical region ($360^{\circ}C$) along with $H_2O_2$ as an oxidant. For ammonia, the optimal destructive condition with air was 5 min at $660^{\circ}C$, but it was possible to operate the process for 3 minutes at $550^{\circ}C$ or 2 min at $600^{\circ}C$ along with $H_2O_2$ as an oxidant. At 2 min and $550^{\circ}C$ along with $H_2O_2$ as an oxidant, humic and ammonia compounds in the actual leachate were easily destructed and the effluent quality met the Korea Standard Leachate Quality.

TEM analysis of IBAD/RABiTS substrates prepared by Tripod polishing (Tripod polishing을 이용한 IBAD/RABiTS 기판의 TEM 분석)

  • Choi, Soon-Mee;Chung, Jun-Ki;Yoo, Sang-Im;Park, Chan;Oh, Sang-Soo;Kim, Cheol-Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.9-14
    • /
    • 2006
  • Sample preparation plays a critical role in microstructure analysis using TEM. Although TEM specimen has been usually prepared by jet-polishing or Ar-ion beam milling technique. these methods could not be applied to YBCO CC which is composed of IBAD or RABiTS substrates, several buffet layers, and YBCO superconducting layer because of big difference in mechanical strengths between the metallic phase and oxide phases. To obtain useful cross-sectional information such as interface between the phases or second phases in YBCO CC, it is prerequisite to secure the large area of thin section in the cross-sectional direction. The superconducting layer or the buffer layers are relatively weak and fragile compared to the metallic substrate such as Ni-5wt%W RABiTS of Hastelloy-based IBAD, and preferential removal of weak ceramic phases during polishing steps makes specimen preparation almost impossible. Tripod polisher and small jig were home-made and employed to sample preparation. The polishing angle was maintained <$1^{\circ}$ throughout the polishing steps using 2 micrometers attached to the tripod plate. TEM specimens with large and thin area could be secured and used for RABiTS/IBAD substrate analyses. In some cases, additional Ar-beam ion milling with low beam current and impinging angle was used for less than 30 sec. to remove debris or polishing media attacked to the specimens.

The effect of composition ratio on the surface morphology and superconducting properties of SmBCO films prepared by thermal co-evaporation method (동시 열증발법으로 제조한 SmBCO 고온 초전도에서 박막 조성비가 표면형상 및 초전도 특성에 미치는 영향)

  • Lee, N.J.;Kim, H.S.;Ha, H.S.;Ko, R.K.;Song, K.J.;Ha, D.W.;Yang, J.S.;Kim, T.H.;Jeong, Y.H.;Youm, D.J.;Moon, S.H.;Park, C.;Oh, S.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.5-8
    • /
    • 2007
  • We have investigated the superconducting properties and surface morphology of $Sm_xBa_yCu_3O_{6+z}$ thin films deposited on LMO/IBAD-MgO/Hastelloy which prepared with different composition ratio by co-evaporation method(EDDC, Evaporation using Drum in Dual Chambers). We observed the composition ratio of SmBCO thin films by EDS analysis. We fabricated SmBCO thin film with critical current density of $1.5{\times}10^6A/cm^2$ at composition ratio of SM:Ba:Cu=1.10:2.01:3(at 77 K self-field). And, we confirmed that substitution of Sm-Ba did not occur at Cu rich phase by EDS analysis.

Fabrication of IBAD-MgO template by continuous reel-to-reel process (연속 reel-to-reel 공정을 이용한 IBAD-MgO template 제조)

  • Ko, K.P.;Ha, H.S.;Kim, H.K.;Yu, K.K.;Ko, R.K.;Moon, S.H.;Oh, S.S.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.18-21
    • /
    • 2007
  • Highly textured MgO template by ion-beam-assisted deposition(IBAD) was successfully fabricated using a continuous reel-to-reel(R2R) mode. To enlarge the deposition area, the previous IBAD system was modified into the system with 14-pass and five heating zone. Every processing step was carried out using this multi-turn IBAD system. The overall process consists of R2R electropolishing of a hastelloy C276 tape, deposition of $Al_2O_3$ diffusion barrier, $Y_2O_3$ seed layer, IBAD-MgO and homoepi-MgO layer. The IBAD-MgO templates were fabricated using the IBAD system with 216 cm-length deposition zone and 32 cm diameter ion source. The texture of MgO films developed during the IBAD process was monitored by in-situ reflection high energy electron diffraction(RHEED) to optimize the IBAD process. Recently, 100 m long IBAD-MgO tape with in-plane texture of $\Delta{\phi}<10^{\circ}$ was successfully fabricated using the modified IBAD system. In this report, the detailed deposition condition of getting a long length IBAD-MgO template with a good epitaxy is described.

Planarization of SUS310 Metal Substrate Used for Coated Conductor Substrate by Chemical Solution Coating Method (화학적인 용액 코팅방법에 의한 박막형 고온초전도체에 사용되는 SUS310 금속모재의 평탄화 연구)

  • Lee, J.B.;Lee, H.J.;Kim, B.J.;Kwon, B.K.;Kim, S.J.;Lee, J.S.;Lee, C.Y.;Moon, S.H.;Lee, H.G.;Hong, G.W.
    • Progress in Superconductivity
    • /
    • v.12 no.2
    • /
    • pp.118-123
    • /
    • 2011
  • The properties of $2^{nd}$ generation high temperature superconducting wire, coated conductor strongly depend on the quality of superconducting oxide layer and property of metal substrate is one of the most important factors affecting the quality of coated conductor. Good mechanical and chemical stability at high temperature are required to maintain the initial integrity during the various process steps required to deposit several layers consisting coated conductor. And substrate need to be nonmagnetic to reduce magnetization loss for ac application. Hastelloy and stainless steel are the most suitable alloys for metal substrate. One of the obstacles in using stainless steel as substrate for coated conductor is its difficulties in making smooth surface inevitable for depositing good IBAD layer. Conventional method involves several steps such as electro polishing, deposition of $Al_2O_3$ and $Y_2O_3$ before IBAD process. Chemical solution deposition method can simplify those steps into one step process having uniformity in large area. In this research, we tried to improve the surface roughness of stainless steel(SUS310). The precursor coating solution was synthesized by using yttrium complex. The viscosity of coating solution and heat treatment condition were optimized for smooth surface. A smooth amorphous $Y_2O_3$ thin film suitable for IBAD process was coated on SUS310 tape. The surface roughness was improved from 40nm to 1.8 nm by 4 coatings. The IBAD-MgO layer deposited on prepared substrate showed good in plane alignment(${\Delta}{\phi}$) of $6.2^{\circ}$.

Corrosion Characteristics of Fe-Si, Ni-Ti and Ni Alloy in Sulfuric Acid Environments (황산 환경에서 Fe-Si, Ni-Ti계 및 Ni 합금의 내부식성 특성)

  • Kwon, Hyuk-Chul;Kim, Dong-Jin;Kim, Hong-Pyo;Park, Ji-Yeon;Hong, Seong-Deok
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Methods of producing hydrogen include steam reforming, electrochemical decomposition of water, and the SI process. Among these methods, the Sulfur iodine process is one of the most promising processes for hydrogen production. The thermochemical sulfur-iodine (SI) process uses heat from a high-temperature-gas nuclear reactor to produce $H_2$ gas; this process is known for its production of clean energy as it does not emit $CO_2$ from water. But the SI-process takes place in an extremely corrosive environment for the materials. To endure SI environments, the materials for the SI environment will have to have strong corrosion resistance. This work studies the corrosion resistances of the Fe-Si, Ni-Ti and Ni Alloys, which are tested in SI-process environments. Among the SI-process environments, the conditions of boiling sulfuric acid and decomposed sulfuric acid are selected in this study. Before testing in boiling sulfuric acid environments, the specimens of Fe-4.5Si, Fe-6Si, Ni-4.5Si, Ni-Ti-Si-Nb and Ni-Ti-Si-Nb-B are previously given heat treatment at $1000^{\circ}C$ for 48 hrs. The reason for this heat treatment is that those specimens have a passive film on the surface. The specimens are immersed for 3~14 days in 98wt% boiling sulfuric acid. Corrosion rates are measured by using the weight change after immersion. The corrosion rates of the Fe-6Si and Ni-Ti-Si-Nb-B are found to decrease as the time passes. The corrosion rates of Fe-6si and Ni-Ti-Si-Nb-B are measured at 0.056 mm/yr and 0.16 mm/yr, respectively. Hastelloy-X, Alloy 617, Alloy 800H and Haynes 230 are tested in the decomposed sulfuric acid for one day. Alloy 800H was found to show the best corrosion resistance among the materials. The corrosion rate of Alloy 800H is measured at -0.35 mm/yr. In these results, the corrosion resistance of materials depends on the stability of the oxide film formed on the surface. After testing in boiling sulfuric acid and in decomposed sulfuric acid environments, the surfaces and compositions of specimens are analyzed by SEM and EDX.

WELD REPAIR OF GAS TURBINE HOT END COMPONENTS

  • Chaturvedi, M.C.;Yu, X.H.;Richards, N.L.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.235-243
    • /
    • 2002
  • Ni-base superalloys are used extensively in industry, both in aeroengines and land based turbines. About 60% by weight of most modern gas turbine engine structural components are made of Ni-base superalloys. To satisfy practical demands, the efficiency of gas turbine engines has been steadily and systematically increased by design modifications to handle higher turbine inlet or firing temperatures. However, the increase in operating temperatures has lead to a decrease in the life of components and increase in costs of replacement. Moreover, around 80% of the large frame size industrial/utility gas turbines operating in the world today were installed in the mid-sixties to early seventies and are now 25 to 30 years old. Consequently, there are greater opportunities now to repair and refurbish the older models. Basically, there are two major factors influencing the weldability of the cast alloys: strain-age cracking and liquation cracking. Susceptibility to strain-age cracking is due to the total Ti plus AI content of the alloy; Liquation cracking is due either to the presence of low melting constituents or constitutional liquation of constituents. Though Rene 41 superalloy has 4.5wt.% total Ti and Al content and falls just below the safe limit proposed by Prager et al., controlled grain size and special heat treatments are needed to obtain crack-free welds. Varying heat treatments and filler materials were used in a laboratory study, then the actual welding of service parts was carried out to verity the possibility of crack-tree weld of components fabricated from Rene 41 superalloy. The microstructural observations indicated that there were two kinds of carbides in the FCC matrix. MC carbides were located along the grain boundaries, while M$_{23}$C$_{6}$ carbide was located both inter and intra granularly. Two kinds of filler materials, Rene 41 and Hastelloy X were used to gas tungsten arc weld a patch into the sheet metal, along with varying pre-weld heat treatments. The microstructure, hardness and tensile tests were determined. The service distressed parts were categorized into three classes: with large cracks, with medium cracks and with small or no visible cracks. No significant difference in microstructure among the specimens was observed. Specimens were cut from the corner and the straight edge of the patch repair, away from the corner. The only cracks present were found to be associated with inadequate surface preparation to remove oxidation. Guidelines for oxide removal and the welding procedures developed in the research enabled crack-free welds to be produced.d.

  • PDF