• 제목/요약/키워드: Harvesting performance

검색결과 381건 처리시간 0.022초

공급률 및 탈곡통 길이 변화에 따른 자탈형 콤바인 탈곡 성능 (Threshing Performance dependent upon Feed Rate and Threshing Drum Length for Head-Feed Combine)

  • 서신원;이상우;허윤근
    • 농업과학연구
    • /
    • 제33권2호
    • /
    • pp.159-166
    • /
    • 2006
  • Threshing loss was increased due to dropping of the threshing efficiency when the 4 row head-feed combine harvested 5 row rice to improve harvesting performance of a combine. Reasonable design criteria were examined to determine the ranges of both of feed rate and the length of threshing drum for the 4 row head-feed combine being used as a 5-row combine. Harvesting performance increased as working width or working speed increased, it resulted in 15% increase when the working width increased from 4 row to 5 row. Harvesting operations of the 4 row combine performed normally in the 4 row rice in threshing loss less than 1%, however, threshing loss increased to 2.25% in the 5 row due to poor threshing efficiency. The length of threshing drum was increased from 710 mm to 810 mm as well as the speed of crop feed chain was increased from 0.61 m/s to 0.75 m/s so as to improve the poor threshing efficiency resulted from the enlarged working width from the 4 row to the 5 row, which would decrease threshing loss less than 1%.

  • PDF

채널 센싱 기반의 무전원 백스케터 센서 네트워크의 성능 (Performance of Battery-less Backscatter Sensor Networks Based on Good Channel Sensing)

  • 홍승관;심이삭;황유민;김진영
    • 한국위성정보통신학회논문지
    • /
    • 제11권3호
    • /
    • pp.6-11
    • /
    • 2016
  • 본 논문은 무전원의 백스케터 통신이 결합된 RF 에너지 하비스팅 시스템에서 주파수 자원의 효율을 높이기 위한 스펙트럼 센싱 알고리즘을 연구했다. 송신기 측에 스팩트럼 센싱 알고리즘을 이용해서 유휴주파수 대역을 찾고, 찾은 유휴주파수 대역 중에서 페이딩 영향이 적은 채널을 선택한다. 알고리즘을 적용한 송신기는 페이딩의 영향이 적은 신호를 송신하여, 수신측에서 수신신호의 간섭을 완화시키고, 수신신호강도를 향상시킬 수 있다. 따라서, 백스케터 통신이 결합된 RF 에너지 하비스팅에 스팩트럼 센싱 알고리즘이 적용된 송신기를 사용하고, 컴퓨터 시뮬레이션 결과를 통해 백스케터 통신의 BER과 수신거리별 수신세기, 그리고 RF 에너지 하비스팅의 성능이 이전보다 향상하는 것을 확인하였다.

Design and Construction of a Pick-up Type Pulse Crop Harvester

  • Lee, Ki Yong;Yoo, Soonam;Han, Byung Hee;Choi, Yong;Choi, Il Su
    • Journal of Biosystems Engineering
    • /
    • 제42권1호
    • /
    • pp.12-22
    • /
    • 2017
  • Purpose: This aim of this study was to develop a pick-up type pulse crop harvester for harvesting cut and dried pulse crop. Methods: The pick-up type pulse crop harvester was designed and constructed. Its specifications and operating performance were investigated. Results: Compared with conventional bean harvesters, the pick-up type pulse crop harvester adopted seven rows of chains with tines to pick-up the cut and dried pulse crop on a flat or ridged field, two transverse threshing drums with steel wire teeth to reduce the threshing speed, and a tilt plate and plastic bucket elevator for conveying clean grain to reduce damage. The threshing speed and the oscillating frequency of the separating and cleaning parts according to crop type and condition could be varied easily to efficiently use engine power and to improve harvesting performance. The harvester showed forward speed ranges of 0 ~ 1.5 m/s during harvesting operation, and 0 ~ 2.5 m/s during road travelling. The pick-up width of the harvester was about 1 m. Conclusions: The pick-up type self-propelled 51.5 kW harvester was designed and constructed to harvest cut and dried pulse crop. The effective field capacity of the harvester was predicted as above 40 a/h.

식용 들깻잎 수확 자동화 시스템의 그리퍼 및 절단 컷터 개발 (Development of a Gripper and a Cutter for the Automatic Harvest of Green Perilla Leaves)

  • 송영호;장동일;방승훈;조한성
    • Journal of Biosystems Engineering
    • /
    • 제28권6호
    • /
    • pp.497-504
    • /
    • 2003
  • The objectives of this study were to develop a harvesting gripper for perilla leaves and test its performance, which was a partial work of the automated perilla leaves harvesting system development. The results of this study could be summarized as the followings: The shear forces for harvesting the perilla were measured. The measured results showed that the average shear force required was 12.13N for cutting the petioles attached to the perilla stalks, and the maximum of 17.42N. The inner diameter of air cylinder used was 6mm and the air pressure was maintained as 0.7㎫ during the tests. The time required for cutting perilla leaves could be adjusted by the control program and cutting operation could be done within 1- 10 seconds. The performance tests were conducted to harvest the perilla leaves by the gripper developed. The average success rates of cutting were 72.2% for the first test, 78.5% for the second, and 74.2% for the last. The perilla leaves were not damaged by the gripper The whole system operation could be finished within three seconds except the delay time for dropping harvested leaves.

High-Quality Coarse-to-Fine Fruit Detector for Harvesting Robot in Open Environment

  • Zhang, Li;Ren, YanZhao;Tao, Sha;Jia, Jingdun;Gao, Wanlin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권2호
    • /
    • pp.421-441
    • /
    • 2021
  • Fruit detection in orchards is one of the most crucial tasks for designing the visual system of an automated harvesting robot. It is the first and foremost tool employed for tasks such as sorting, grading, harvesting, disease control, and yield estimation, etc. Efficient visual systems are crucial for designing an automated robot. However, conventional fruit detection methods always a trade-off with accuracy, real-time response, and extensibility. Therefore, an improved method is proposed based on coarse-to-fine multitask cascaded convolutional networks (MTCNN) with three aspects to enable the practical application. First, the architecture of Fruit-MTCNN was improved to increase its power to discriminate between objects and their backgrounds. Then, with a few manual labels and operations, synthetic images and labels were generated to increase the diversity and the number of image samples. Further, through the online hard example mining (OHEM) strategy during training, the detector retrained hard examples. Finally, the improved detector was tested for its performance that proved superior in predicted accuracy and retaining good performances on portability with the low time cost. Based on performance, it was concluded that the detector could be applied practically in the actual orchard environment.

Fabrication of an Automatic Color-Tuned System with Flexibility Using a Dry Deposited Photoanode

  • Choi, Dahyun;Park, Yoonchan;Lee, Minji;Kim, Kwangmin;Choi, Jung-Oh;Lee, Caroline Sunyong
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • 제5권5호
    • /
    • pp.643-650
    • /
    • 2018
  • A self-powered electrochromic device was fabricated on an indium tin oxide-polyethylene naphthalate flexible substrate using a dye-sensitized solar cell (DSSC) as a self-harvesting source; the electrochromic device was naturally bleached and operated under outdoor light conditions. The color of the organic electrochromic polymer, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, was shifted from pale blue to deep blue with an antimony tin oxide film as a charge-balanced material. Electrochromic performance was enhanced by secondary doping using dimethyl sulfoxide. As a result, the device showed stable switching behavior with a high transmittance change difference of 40% at its specific wavelength of 630 nm for 6 hrs. To improve the efficiency of the solar cell, 1.0 wt.% of Ag NWs in the photoanode was applied to the $TiO_2$ photoanode. It resulted in an efficiency of 3.3%, leading to an operating voltage of 0.7 V under xenon lamp conditions. As a result, we built a standalone self-harvesting electrochromic system with the performance of transmittance switching of 29% at 630 nm, by connecting with two solar cells in a device. Thus, a self-harvesting and flexible device was fabricated to operate automatically under the irradiated/dark conditions.

압전 에너지 하베스팅을 이용한 신발용 발열 시스템 개발 (Development of Shoe-heating System based on Piezoelectric Energy Harvesting)

  • 이승진;이상웅;신희근;김기만;최성대
    • 한국기계가공학회지
    • /
    • 제18권7호
    • /
    • pp.48-55
    • /
    • 2019
  • Soldiers have been exposed to the risk of chilblains in cold winters. Recent studies have described sensors and IOT devices that use independent power sources based on piezoelectric energy harvesting. Therefore, the heated shoes with an independent power source have been developed. For the application of energy harvesting to shoes, it is necessary to develop a unique harvester by considering human gait characteristics. Energy harvesters and ceramics were designed and fabricated in this study. The performances of these harvesters and ceramics were evaluated experimentally. Then, the harvesters and ceramics with superior performance were selected and applied to the system. Thereafter, the heating and charging performance of the system was tested under real walking conditions. The results show that the developed system can generate adequate energy to charge the battery and heat the shoes.

압전나노소재 기반의 플렉서블 에너지 하베스팅 소자 연구동향 (Recent Progress in Flexible Energy Harvesting Devices based on Piezoelectric Nanomaterials)

  • 박귀일
    • 한국분말재료학회지
    • /
    • 제25권3호
    • /
    • pp.263-272
    • /
    • 2018
  • Recent developments in the field of energy harvesting technology that convert ambient energy resources into electricity enable the use of self-powered energy systems in wearable and portable electronic devices without the need for additional external power sources. In particular, piezoelectric-effect-based flexible energy harvesters have drawn much attention because they can guarantee power generation from ubiquitous mechanical and vibrational movements. In response to demand for sustainable, permanent, and remote use of real-life personal electronics, many research groups have investigated flexible piezoelectric energy harvesters (f-PEHs) that employ nanoscaled piezoelectric materials such as nanowires, nanoparticles, nanofibers, and nanotubes. In those attempts, they have proven the feasibility of energy harvesting from tiny periodic mechanical deformations and energy utilization of f-PEH in commercial electronic devices. This review paper provides a brief overview of f-PEH devices based on piezoelectric nanomaterials and summarizes the development history, output performance, and applications.

F$\ddot{o}$rst energy transfer 를 적용한 준고체 DSSC 의 효율향상 (Enhanced Light Harvesting from F$\ddot{o}$rst-type resonance Energy Transfer in the Quasi-Solid State Dye-Sensitized Solar Cells)

  • 천종훈;이정관;양현석;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.117.1-117.1
    • /
    • 2011
  • We have demonstrated Forst-type resonance energy transfer (FRET) in the quasi-solid type dye-sensitized solar cells between organic fluorescence materials as an energy donor doped in polymeric gel electrolyte and ruthenium complex as an energy acceptor on surface of $TiO_2$. The strong spectral overlap of emission/absorption of energy donor and acceptor is required to get high FRET efficiency. The judicious choice of energy donor allows the enhancement of light harvesting characters of energy acceptor in quasi-solid dye sensitized solar cells which increase the power conversion efficiency. The enhanced light harvesting effect by the judicious choice/design of the fluorescence materials and sensitizing dyes permits the enhancement of photovoltaic performance of DSSC.

  • PDF

Highly Efficient, Flexible Thin Film Nanogenerator

  • 이건재
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.10.1-10.1
    • /
    • 2011
  • Energy harvesting technologies converting external sources (such as thermal energy, vibration and mechanical energy from the nature sources of wind, waves or animal movements) into electrical energy is recently a highly demanding issue in the materials science community for making sustainable green environments. In particular, fabrication of usable nanogenerator attract the attention of many researchers because it can scavenge even the biomechanical energy inside the human body (such as heart beat, blood flow, muscle stretching, or eye blinking) by converging harvesting technology with implantable bio-devices. Herein, we describe procedure suitable for generating and printing a lead-free microstructured $BaTiO_3$ thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible $BaTiO_3$ thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of $BaTiO_3$ thin film nanogenerator and the integration of bio-eco-compatible ferroelectric materials may enable innovative opportunities for artificial skin and energy harvesting system.

  • PDF