• Title/Summary/Keyword: Harvester

Search Result 400, Processing Time 0.023 seconds

A Study on Frequency Tunable Vibration Energy Harvester (주파수 튜닝이 가능한 진동형 에너지 하베스터에 관한 연구)

  • Lee, Byung-Chul;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.202-206
    • /
    • 2014
  • The common vibration energy harvester effectively converts mechanical vibration to electric power at a specific resonance frequency that must match the ambient excitation frequency. The resonance frequencies of energy harvesters are fixed during the design process and could not be changed after fabrication. In this paper, we proposed the new frequency tuning which uses the rotatable spring in order to adjust the spring constants. By this tuning method, the resonance frequency of the system can simply be manipulated using spring rotation. The proposed energy harvester has been successfully tuned to a resonance frequency between 23 and 32 Hz. The experimental results demonstrated that the proposed energy harvester could generate a maximum output power of $60{\mu}W$ with an acceleration of 0.5 g ($1g=9.81m/s^2$), and that the resonance frequency of the harvester was able to tune approximately 31.4%. When the proposed harvester was attached to an automobile engine, the maximum open circuit voltage of 1.78 Vpp was produced at 700 rpm.

Application and Verification of Fully-Integrated Design Environment for Piezoelectric Energy Harvester (압전형 에너지 수확장치를 위한 통합 해석환경의 적용 및 검증)

  • Liu, Jian;Welham, Chris;Han, Seungoh
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.364-368
    • /
    • 2013
  • Vibrational energy harvester based on piezoelectricity has been expected to be the dominant energy harvesting technology due to the advantages of high conversion efficiency, light weight and small size, night operation, etc. Its commercialization is just around the corner but the integration with power management electronics should be solved in advance. In this paper, therefore, fully-integrated design environment for piezoelectric energy harvesting systems is presented to assist co-design with the power management electronics. The proposed design environment is capable of analyzing the energy harvester including the package-induced damping effects and simulating the device and its power management electronics simultaneously. When the developed design environment was applied to the fabricated device, the simulated resonant frequency matched well with the experimental result with a difference of 2.97% only. Also, the complex transient response was completed in short simulation time of 3,001 seconds including the displacement distribution over the device geometry. Furthermore, a full-bridge power management circuit was modeled and simulated with the energy harvester simultaneously. Therefore the proposed, fully-integrated design environment is accurate and fast enough for the contribution on successful commercialization of piezoelectric energy harvester.

Development and Evaluation of the Bender Type Piezoelectric Energy Harvester According to Installation Methods and Vehicle Weight (매설방법과 차량하중에 따른 벤더형 압전에너지 하베스터의 설계 및 평가)

  • Kim, Chang-Il;Jeong, Young-Hun;Yun, Ji-Sun;Cho, Jeong-Ho;Paik, Jong-Hoo;Jang, Yong-Ho;Choi, Beom-Jin;Park, Shin-Seo;Cho, Young-Bong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.274-278
    • /
    • 2016
  • A road energy harvester was designed and fabricated to convert mechanical energy from the vehicle load to electrical energy. The road energy harvester is composed of 20 piezoelectric materials. This study attempted to evaluate output depending on pavement materials when paving road piezoelectric energy harvester in the road. Harvester is the bender type and is the method of supporting the both ends of piezoelectric material and applying the load in the middle part. Harvester was paved in the type paved with asphalt, type paved with cement and in the exposed type not covering the top of harvester. The output characteristics were compared and evaluated depending on changes in vehicle load and vehicle speed changes. As vehicles, truck (11.9 ton), SUV(1.6 ton) and sedan (1.5 ton) were used and the output characteristics when driving at the interval of 10 km/h from 10 km/h to 100 km/h were evaluated.

A Study on Output Characteristics of the π-type Piezoelectric Harvester (π-type 압전 하베스터의 출력 특성 연구)

  • Lee, Byeong-Ha;Jeong, Seong-Su;Cheon, Seong-Kyu;Ha, Yong-Woo;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Generating output characteristics of a ${\pi}$-type piezoelectric harvester depending on size of the ceramic and the elastic body were studied. The ${\pi}$-type piezoelectric harvester consists of a rectangular piezoelectric ceramic and a ${\pi}$ shaped elastic body. If the tensions is applied at both ends of an elastic body legs, the piezoelectric effect occurs at the ceramics through the form change of the elastic body. The structure of this ${\pi}$-type harvester can be used in a various area than an existing type generator, because it prevent from direct pressure to the ceramic. Generating characteristics of the harvester were analyzed by using finite element method program. The piezoelectric harvester was fabricated on the basis of analyzed results and attached on a frequency controllable vibrator to measure the output characteristics. And generating characteristics were defined by comparing analysis results and experimental results. The highest output voltage was obtained when the ceramic length, thickness were 20 mm, 0.5 mm in the analysis result. And experiment was performed by analysis results at low frequency region, output voltage was generated about 6 V.

A Research on the Classification of Intelligence Level of Unmanned Grain Harvester (무인 곡물 수확기 지능수준 등급구분에 관한 연구)

  • Na, Zhao;Pan, Young-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.5
    • /
    • pp.165-173
    • /
    • 2020
  • The emergence of unmanned agricultural machinery has brought new research content to the development of precision agriculture. In order to speed up the research on key technologies of unmanned agricultural machinery, classification of intelligence level of unmanned agricultural machinery has become a primary task. In this study, the researchers take the complex interactive system consisting of unmanned grain harvester, task and driving environment as the research object, and carry out a research on the grading and classification of intelligent level of unmanned grain harvester. The researchers of this study also establish an evaluation model of unmanned grain harvester vehicle, which consists of human intervention degree, environmental complexity, and task complexity. Besides, the grading and classification of intelligence level of the unmanned grain harvester is carried out according to the human intervention degree, environmental complexity and the task complexity of the unmanned grain harvester. It provides a direction for the future development of unmanned agricultural machinery.

A Study on Energy Harvester with Cantilever Structure Using PZT Piezoelectric Material (PZT 압전재료를 이용한 외팔보 구조의 에너지 수집기에 관한 연구)

  • Cha, Doo-Yeol;Lee, Soo-Jin;Chang, Sung-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.416-421
    • /
    • 2011
  • Nowadays, the increasing demands upon mobile devices such as wireless sensor networks and the recent advent of low power electrical devices such as MEMS make such renewable power sources attractive. A vibration-driven MEMS lead zirconate titanate $Pb(Zr,Ti)O_3$ (PZT) cantilever device is developed for energy harvesting application. This paper presents a piezoelectric based energy harvester which is suitable for power generating from conventional vibration and has in providing energy for low power electron ic devices. The PZT cantilever is used d33 mode to get the electrical power. The PZT cantilever based energy harvester with the dimension of 7 mm${\times}$3 mm${\times}$0.03 mm is fabricated using micromachining technologies. This PZT cantilever has the mechanical resonance frequency with a 900 Hz. With these conditions, we get experimentally the 37 uW output power from this device with the application of 1g acceleration using the 900 Hz vibration. From this study, we show the feasibility of one of energy harvesting candidates using PZT based structure. This PZT energy harvester could be used for various applications such a batteryless micro sensors and micro power generators.

BASIS RESEARCH ON NOISE CONTROL OF HEAD-FEEDING TYPE COMBINE HARVESTER USING SOUND INTENSITY METHOD

  • Sasao, A.;Iwasa, M.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.752-760
    • /
    • 1993
  • We research ed on the noise control of a head feeding type combine harvester. It is a kind of combine harvester developed in Japan. And at present, it is used by most Japanese farmer. For a head-feeding type combine harvester it is very difficult to determine the sources of noise because it is a combination of reapers and automatic , threshers and several running parts. However we succeeded in finding out the sound sources of combine harvesters and analyzing their sound by the using sound intensity method. The sound intensity Method is a very up-to-date method to measure and analyze Sound Intensity Levels and sound directions at several measuring point sin a specified area. In this research, first a conventional sound level measurement method is used and secondly the sound intensity method. The first method shows a rather great limitation in allowed exposure duration. The second method shows pin-points the engine itself as being the main source of noise, causing sound flows a ross the operator's seat.

  • PDF

Power Output Characteristics of an Modified Piezoelectric Energy Harvester (압전 발전소자의 변형모델에 따른 출력특성)

  • Jeong, Seong-Su;Jun, Ho-Ik;Cheon, Seong-Kyu;Kang, Shin-Chul;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.776-780
    • /
    • 2016
  • Recently, energy harvesting technology is increasing due to the fossil fuel shortages. To compensate problem of low generating power than other energy harvesters, many researchers have studied about piezoelectric harvester for obtaining high output. In this paper, four kinds of unimorph based piezoelectric harvesters were proposed and its generating characteristics were studied. Each of the piezoelectric harvesters has three, four, and six unimorph arms, respectively, and the arms are symmetrically arranged from one central point. The centrosymmetric structure of the harvesters guarantees more stable and multiplied generation than a cantilever-type harvester since the arms of the harvester resonate at same frequency. Resonance frequency, output voltage, displacement, and stress characteristics of the generator were analyzed by using a FEM (finite element method) program. Harvesters were fabricated on the basis of analysis results. Experimental results were compared with simulated results.

Design and Fabrication of Printed Circuit Board (PCB) Integrated Energy Harvester (PCB 일체형 에너지 하베스터의 설계 및 제작)

  • Min, Chul Hong;Kim, Tae Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.846-851
    • /
    • 2013
  • Recently, energy harvesting technologies are considered as the great alternatives to reduce the dependency on secondary batteries. In this paper, we proposed PCB type energy harvester which can be directly integrated with other electronic components on same board. To form the three dimensional coil structure, two PCBs with patterned metal lines are solder bonded. For magnetic induction, inside of coil structure was filled with magnetic substance and rotary motioned external magnets are applied to near the harvester. The effects of metal wire width on PCB, thickness of magnetic substance, and frequency of rotary motion on energy harvesting performance are analyzed by computer simulation and experiments. Experimental results showed 29.89 ${\mu}W$ of power generation performance at the frequency of 5.2 Hz and it is shown that designed harvester can be effectively applied on vibration environment with very limited frequency.

Bimorph piezoelectric energy harvester structurally integrated on a trapezoidal plate

  • Avsar, Ahmet Levent;Sahin, Melin
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.249-265
    • /
    • 2016
  • A bimorph piezoelectric energy harvester is developed for harvesting energy under the vortex induced vibration and it is integrated to a host structure of a trapezoidal plate without changing its passive dynamic properties. It is aimed to select trapezoidal plate as similar to a vertical fin-like structure which could be a part of an air vehicle. The designed energy harvester consists of an aluminum beam and two identical multi fiber composite (MFC) piezoelectric patches. In order to understand the dynamic characteristic of the trapezoidal plate, finite element analysis is performed and it is validated through an experimental study. The bimorph piezoelectric energy harvester is then integrated to the trapezoidal plate at the most convenient location with minimal structural displacement. The finite element model is constructed for the new combined structure in ANSYS Workbench 14.0 and the analyses performed on this particular model are then validated via experimental techniques. Finally, the energy harvesting performance of the bimorph piezoelectric energy harvester attached to the trapezoidal plate is also investigated through wind tunnel tests under the air load and the obtained results indicate that the system is a viable one for harvesting reasonable amount of energy.