• Title/Summary/Keyword: Harvest Index

Search Result 197, Processing Time 0.032 seconds

Growth and Yield Responses of Corn (Zea mays L.) as Affected by Growth Period and Irrigation Intensity

  • Nam, Hyo-Hoon;Seo, Myung-Chul;Cho, Hyun-Suk;Lee, Yun-Ho;Seo, Young-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.674-683
    • /
    • 2017
  • The frequency and intensity of soil moisture stress associated with climate change has increasing, and the stability of field crop cultivation has decreasing. This experiment was conducted to investigate the effect of soil moisture management method on growth and yield of corn. Soil moisture was managed at the grade of WSM (wet soil moisture, 34.0~42.9%), OSM (optimum soil moisture, 27.8~34.0%), DSM (dry soil moisture, 20.3~27.8%), and ESM (extreme dry moisture, 16.6~20.3%) during V8 (8th leaf stage)-VT (tasseling stage). After VT, irrigation was limited. The treated amount of irrigation was 54.1, 47.7, 44.0 and 34.5% of total water requirement, respectively. The potential evapotranspiration during the growing period was $3.29mm\;day^{-1}$, and upward movement of soil water was estimated by the AFKAE 0.5 model in the order of ESM, DSM, OSM, and WSM. We could confirm this phenomenon from actual observations. There was no significant difference in leaf characteristics, dry matter, and primary productivity depending on the level of soil moisture, but leaf development was delayed and dry weight decreased in DSM. However, dry weight and individual productivity of DSM increased after irrigation withdrawal compared to that of OSM. In DSM, ear yield and number of kernels per ear decreased, but water use efficiency and harvest index were higher than other treatments. Therefore, it is considered that the soil moisture is concentratedly managed before the V8 period, the V8-VT period is controlled within the range of 100 to 500 kPa (20.3~27.8%), and no additional irrigation is required after the VT.

SSR Analysis of Genetic Diversity and Nitrogen Use Efficiency Traits in Rice

  • Kim, Myung Ki;Oh, Myeong Kyu;Lee, Jeong Heui;Kim, Yeon Gyu;Lee, Young Tae;Kim, Kwang Ho;Ahn, Sang Nag
    • Korean Journal of Breeding Science
    • /
    • v.40 no.2
    • /
    • pp.119-127
    • /
    • 2008
  • A total of 41 microsatellite markers were used with 29 genotypes to examine the relationship between SSR polymorphisms and N-use efficiency related traits with a goal to identify the putative QTLs related to these traits. These primers yielded a total of 183 alleles (average 4.46 alleles per primer), and polymorphism information content (PIC) values of the SSRs ranged from 0.119 to 0.805 with mean value of 0.425. Correlation coefficients were obtained among the four N-use efficiency traits in the 34 accessions and significant positive correlations of relative ratios between grain yield and harvest index (r=0.3404) and total dry matter (r=0.7976), while N uptake showed a moderate level of correlation with the ratios of the grain yield and total dry matter, respectively. 36.5% (15/41) SSR markers were monomorphic among the 25 japonica accessions out of the 29 accessions. Association between SSR genotypes and phenotypic performances from the total (29) or japonica (25) accessions was tested based on a single point analysis. Three putative QTL regions were detected for the ratio of grain yield. These include the chromosomal region containing the RM283 locus on chromosome 1 and RM25 on chromosome 8 (all and japonica accessions) and the region with the SSR marker, RM206 on chromosome 11 (the japonica accessions). For the total dry matter ratio, two chromosomal regions were identified as the putative QTL region. One is the region with the SSR marker, RM162 on chromosome 6 (all and japonica accessions) and the other was the one with the SSR marker RM25 on chromosome 8 (the japonica accessions). Among these markers, RM25 showed associations with both traits.

Atmospheric Correction of Sentinel-2 Images Using Enhanced AOD Information

  • Kim, Seoyeon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.83-101
    • /
    • 2022
  • Accurate atmospheric correction is essential for the analysis of land surface and environmental monitoring. Aerosol optical depth (AOD) information is particularly important in atmospheric correction because the radiation attenuation by Mie scattering makes the differences between the radiation calculated at the satellite sensor and the radiation measured at the land surface. Thus, it is necessary to use high-quality AOD data for an appropriate atmospheric correction of high-resolution satellite images. In this study, we examined the Second Simulation of a Satellite Signal in the Solar Spectrum (6S)-based atmospheric correction results for the Sentinel-2 images in South Korea using raster AOD (MODIS) and single-point AOD (AERONET). The 6S result was overall agreed with the Sentinel-2 level 2 data. Moreover, using raster AOD showed better performance than using single-point AOD. The atmospheric correction using the single-point AOD yielded some inappropriate values for forest and water pixels, where as the atmospheric correction using raster AOD produced stable and natural patterns in accordance with the land cover map. Also, the Sentinel-2 normalized difference vegetation index (NDVI) after the 6S correction had similar patterns to the up scaled drone NDVI, although Sentinel-2 NDVI had relatively low values. Also, the spatial distribution of both images seemed very similar for growing and harvest seasons. Future work will be necessary to make efforts for the gap-filling of AOD data and an accurate bi-directional reflectance distribution function (BRDF) model for high-resolution atmospheric correction. These methods can help improve the land surface monitoring using the future Compact Advanced Satellite 500 in South Korea.

Varietal Differences of Germinative Traits Related with Malting Barley Breeding (맥관맥의 발아관련형질들의 품종간 차이)

  • Nam, Jung-Hyun;Lee, Eun-Sup;Park, Moon-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.3
    • /
    • pp.350-355
    • /
    • 1986
  • Sixteen Korean leading barley varieties were tested on the sixtieth day after harvest, in order to investigate differences for germinative traits related, and on the eightieth day to test optimum water level for germination test. The germinative energy(GE) and capacity(GC) in the 4.5cc water level were the highest individually. Varietal variations among GE, GC, promptness index(PI) and water sensitivity(WS) were highly significant in storage conditions and water levels. Correlation coefficient estimated were positive among GE, GC, PI, but negative between these traits and WS. Also the varietal difference of WS gets higher with the following order of malting barley<naked barley<covered barley. Heritabilities of broad sense for GE, GC, PI and WS were high, therefore, these traits could be considered in malting barley breeding.

  • PDF

Long-term Elevated Temperature Affects the Growth and Quality of 'Shiranuhi' Mandarin Grown in a Green House (장기간 온도상승이 시설재배 '부지화'의 수체 생장 및 과실 품질에 미치는 영향)

  • Misun Kim;Young-Eel Moon;Sang Suk Kim;Jaeho Joa;Seok Kyu Yun;YoSup Park
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.318-327
    • /
    • 2022
  • BACKGROUND: The mean annual temperature of the Korean Peninsula will continue to rise due to global warming. 'Shiranuhi' mandarin-a late-harvest cultivar-is primarily cultivated in plastic greenhouses where high temperatures cannot be directly avoided. Therefore, growth and fruit quality changes under elevated temperatures must be investigated. METHODS AND RESULTS: Elevated temperatures were divided into three groups [2℃ (T-I), 4℃ (T-II), and 6℃ (T-III) above the ambient temperature] during the 2019-2020 season. Mean temperatures were 17.1℃, 18.6℃, and 20.2℃ in T-I, T-II, and T-III, respectively. The bud bursts in T-II and T-III were earlier than that in T-I at 7 days and 11 days, respectibely. And the full blooms in T-II and T-III were earlier than that in T-I at 11 days and 23 days, respectively. Fruit size significantly increased with increased temperature. The citrus color index in the coloring phase markedly differed across treatments. Further, total soluble solid and acid contents markedly changed with temperature rise but the sugar-to-acid ratio did not. Sucrose content tended to decrease with increase in temperature, but citric acid content remained unaffected. CONCLUSION(S): Elevated temperature accelerated plant growth and development but delayed rind color development in 'Shiranuhi' mandarin. Therefore, rise in ambient temperature by >4.6℃ may negatively affect yield and fruit quality.

Basic Studies on the Consumptive Use of Water Required for Dry Field Crops (2) -Garlic and Cucumber- (밭작물소비수량에 관한 기초적 연구(II)-마늘 및 오이-)

  • 김철기;김진한;정하우;최홍규;권영헌
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.3
    • /
    • pp.41-56
    • /
    • 1989
  • The purpose of this study is to find out the basic data for irrigation plans of garlic and cucumber during the growing period, such as total amount of evapotranspiration, coefficients of evapotranspiration at each growth stage, the peak stage of evapotranspiration and the maximum evapotranspiraton, optimum irrigation point, total readily available moisture, and intervals of irrigation date. The plots of experiment were arranged with split plot design which were composed of two factors, irrigation point for main plot and soil texture for split plot, and three levels ; irrigation points with pP 1.7-2.1, pP 2.2-2.5, pP 2.6-2.8, for garlic and those with pP 1.9, pF 2.3, pP 2.7, for cucumber, soil textures of silty clay, sandy loam and sandy soil for both garlic and cucumber, with two replications. The results obtained are summarized as follows 1.There was the highest significant correlation between the avapotranspiration of garlic and cucumber and the pan evaporation, beyond all other meteorological factors considered, as mentioned in the previous paper. Therefore, the pan evaporation is enough to be used as a meteorological index measuring the quantity of evapotranspiration. 2.1/10 probability values of maximum total pan evaporation during growing period for garlic and cucumber were shown as 495.8mm and 406.8mm, respectively, and those of maximum ten day pan evaporation for garlic and cucumber, 63.8mm and 69.7mm, respectively. 3.The time that annual maximum of ten day pan evaporation can be occurred, exists at any stage between the middle of May and the late of June(harvest period) for garlic, and at any stage of growing period for cucumber. 4.The magnitude of evapotranspiration and of its coefficient for garlic and cucumber was occurred in the order of pF 1.7-2.1>pF 2.2-2.5>pF 2.6-2.8 and of pF 1.9>pF 2.3>pF2.7 respectively in aspect of irrigation point and of sandy loam>silty clay>sandy soil in aspect of soil texture for both garlic and cucumber. 5.The magnitude of leaf area index was shown in the order of pF 2.2-2.5>pF 1.7-2.1>pF 2.6-2.8 for garlic and of pF 1.9>pF 2.3>pF 2.7 for cucumber in aspect of irrigation point, and of sandy loam>sandy soil>silty clay in aspect of soil texture for both garlic and cucumber. 6.1/10 probability value of evapotranspiration and its coefficient during the growing period for garlic were shown as 391.7mm and 0.79 respectively, while those of cucumber, 423.lmm and 1.04 respectively. 7.The time the maximum evapotranspiration of garlic can be occurred is at the date of thirtieth before harvest period and the time for cucumber is presumed to be at the date of sixtieth to seventieth after transplanting, At that time, 1/10 probability value of ten day evapotranspiration and its coefficient for garlic is presumed to be 65.lmm and 1.02 respectively, while those of cucumber, 94.8mm and 1.36 respectively. 8.In aspect of irrigation point, the weight of raw garlic and cucumber were increased in the order of pF 2.2-2.5>pF 1.7-2.1>pF 2.6-2.8 and of pF 1.9>pF 2.3>pF 2.7 respectively. Therefore, optimum irrigation point for garlic and cucumber is presumed to be pF 2.2-2.5 and pF 1.9 respectively, when the significance of yield between the different irrigation treatments is considered. 9.Except the mulching period of garlic that soil moisture extraction patterns were about the same, those of garlic and cucumber have shown that maximum extraction rate exists at 7cm deep layer at the beginning stage after removing mulching for garlic and at the beginning stage of growth for cucumber and that extraction rates of 21cm to 35cm deep layer are increased as getting closer to the late stage of growth. 10.Total readily available moisture of garlic in silty clay, sandy loam, sandy soil become to be 18.71-24.96mm, 19.08-25.43mm, 10.35- 13.80mm respctively on the basis of the optimum irrigation point with pF 2.2-2.5, while that of cucumber, 11.8lmm, 12.03mm, 6.39mm respectively on the basis of the optimum irrigation point with pF 1.9. 11.The intervals of irrigation date of garlic and cucumber at the growth stage of maximum consumptive use become to be about three and a half days and one and a half days respectively, on the basis of each optimum irrgation point.

  • PDF

Germination of Yam Bean Seeds as Affected by Temperature and Its Productivity with Different Seeding Dates (얌빈의 온도별 발아특성과 파종시기에 따른 생산성 비교)

  • Uhm, Mi Jeong;Kim, Chi Seon;Kim, Eun Ji;Jung, Hyun Soo;Kim, Jeong Man
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.245-252
    • /
    • 2018
  • Yam bean (Pachyrhizus erosus) is a subtropical plant belonging to the Fabaceae family, and is a tuberous vegetable used as various food material with a crisp and juicy taste. This study was conducted to seek optimum sowing time of yam bean in Korea. For this, we surveyed germination properties by the different temperatures and compared the accumulation temperature (AT) and dry matter production (DMP) on growth stages of yam bean by the different sowing times. Two types of varieties cultivated mainly in Korea, Thailand local variety (TLV) and Cheongunmanma cultivar (CGMM), was used. The germination rate of yam bean was 86.0~94.0% at above $18^{\circ}C$, and germination days was longer at lower temperature. The times for flowering and tuber formation of CGMM were later than those of TLV, and the AT required for flowering, tuber formation and hypertrophy of CGMM were higher than those of TLV by $293^{\circ}C$, $280^{\circ}C$ and $108^{\circ}C$, respectively. Also, DMP of shoot and tuber in CGMM were greater than those in TLV. In sowing at April 25, tuber formation was slower than sowing after that time, and harvest index (HI) was relatively low due to delayed formation and hypertrophy of tuber. In sowing after June 9, DMP of shoot was relatively greater in early growth, but tuber was not sufficient to enlarge due to lack of growth days by cold and frost in late October. In sowing May 10 and 25, DMP of tuber and HI were the highest, because the change of day length and temperature gave an advantage to vegetable growth and tuber development. All above suggest that it was suitable to sow seeds on May for increment of tuber productivity in Korea.

Biological Yielding Potential of Rice in Association with Climatic Factors in Yeongnam Region (영남지역 기상과 수도의 한계생산력 해석)

  • Kim, Soon-Chul;Lee, Soo-Kwan;Chung, Geun-Sik
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.3
    • /
    • pp.259-270
    • /
    • 1985
  • Meteorological year variations for rice crop from 1973 to 1984 were compared by using air temperature and sunshine hour for nursery period, cooling index for reproductive stage and meteorological yield productivity index for ripening period. The most optimum transplanting date and heading date for crop yield based on real transplanting date-grain yield relationship or heading date-grain yield relationship, meteorological yield productivity index and actual results showed good agreement each other. Around May 26 for transplanting and August 10 for heading were the most optimum date in Indica/Japonica hybrid cultivars while these were about June 8 and August 23 for Japonica cultivars, respectively. On the other hand, theoretical late limiting heading date for safe ripening were August 20 for Indica/Japonica hybrid cultivars and August 30 for Japonica cultivars, respectively, for both methods, cumulative temperature method during ripening with 80% believable frequency and meteorological yield productive index method having 1000(kg/10a) yielding potential. Based on the yield forecast trial, the highest values of photosynthetic efficiency, 2.5%, and crop growth rate, 23g/㎡/day, were recorded during 30 days before rice heading. Considering the photosynthetic efficiency and solar radiation, the potential crop growth rate was more or less 30g/㎡/day and the biological grain yielding potential in a existing cultural practices was approximately 900-1000(kg/10a) in Milyang weather condition. To increase further yielding potential, either photosynthetic efficiency or harvest index or both should be improved by manipulating appropriate canopy architecture, plant spacing, fertilizer, chemical, etc.

  • PDF

A Study on the Assessment of Growing Conditions and Production Capacity in the Upland-Field Area of Highland - Focused on Kimchi-Cabbage, Radish, Potato - (농업 생산기반 능력 및 재배여건을 이용한 고랭지 작물 주산지의 생산역량 분석 - 배추, 무, 감자를 중심으로 -)

  • Jung, Hyun-Woo;Kim, Dae-Sik;Bae, Seung-Jong;Park, Jung-Soo;Kim, Han-Joong
    • Journal of Korean Society of Rural Planning
    • /
    • v.22 no.4
    • /
    • pp.131-138
    • /
    • 2016
  • Recently, the cultivated area is reduced, the ratio of upland-field in the total cultivated area is increasing relative appeared in 36.2% in 1990 from 43.7% in 2013. If upland-field can be applied well designed-infrastructure, good income crop production is possible, however, maintenance of infrastructure and a significant portion of the upland-field is maintained under insufficient infrastructure. While imports of agricultural products expanded since the 2000s in progress, looking at the self-sufficiency of upland-field crops, it is reduced to from 90% to 42% for the pepper, it is from 90% to 74% for the garlic, cereals is reduced from 42% by 26%. As a result of these conditions, the competitiveness of farmers has weakened, the risk to meet the challenges of this area of production and supply reduction increased. This study was the first to conduct a basic evaluation index, data analysis and evaluation of indicators to diagnose the agricultural production capacity of the upland field. 12 kinds classified index of producing conditions from the natural environment and eight factors for the cultivation and production capabilities have developed for the assessment of productivity of upland-field (especially Kimchi cabbage). Through this regional imbalance was found, based on the production capabilities conditions are good in Haenam, Gangneung, Pyeongchang. 3 Regions have been low and the lowest Youngwol to 0.8992. Climate(Cultivation conditions) indicators of Mungyeong region is the highest, relatively low areas were in Taebaek. In particular, it is determined to be preferred that the area required for the enhancing the production environment based on providing the convenience for the producing and maintenance of the first production area. It is necessary Increasing part of mechanization, agro-industrial competitiveness through aggressive management plans for facilities as required in the process of post-harvest storage, processing, distribution line can be improved.

Stand Density Control by Selection System in Pyungchang Area, Gangwon Province (강원도 평창지역 택벌림화 작업지의 임분밀도 조절에 관한 연구)

  • Baek, Ju-Hyoun;Yim, Jong-Su;Shin, Man-Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.1
    • /
    • pp.136-143
    • /
    • 2010
  • This study was conducted to provide basic information on the management of natural deciduous forests by presenting suitable stand density over time for natural deciduous forests in Pyungchang Area. The stand density index(SDI) for the sampling point was also computed. The cutting scenarios were adopted by considering the SDI estimated in the sampling point. And then, simulation cutting was enforced to the stand. Cutting scenarios consisted of three cutting levels, with the period of 5 years where each suitable cutting level of selection system will not have the SDI over the maximum SDI throughout 30 years and consider harvest after 30 years. As a result of the simulation cutting, it was found that removing 12% and 14% of basal area per each time kept proper stand density while removing 10% exceed to the adequate basis. From an economic point of view, it was concluded that removal 12% of basal area would be the most suit cutting level in selection system.