• Title/Summary/Keyword: Harness

Search Result 295, Processing Time 0.028 seconds

Measurement of Thermal Conductivity of a 8-harness Carbon/Phenolic Woven Composite (탄소/페놀릭 8매 주자직 복합재료의 열전도도 계측)

  • 구남서;우경식
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.50-52
    • /
    • 2003
  • The purpose of this study is to measure the thermal conductivity of a carbon/phenolic 8-harness woven composite. An experiment apparatus and procedure developed in the previous study were used to measure the thermal conductivities. This method compares the temperature difference between a reference specimen with a known thermal conductivity and the test sample specimen in a steady-state condition.

  • PDF

MICROSCOPIC INVESTIGATION OF DRY FABRICS: Picture Frame Test (건직물 복합재료의 미세거동 관찰: 사진틀 실험)

  • 장승환
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.211-214
    • /
    • 2003
  • This paper presents the microscopic observation results from the picture frame test using five-harness satin weave fabric composite. Aligned and misaligned specimens are observed to verify the exact tow deformation pattern such as tow interval and change in tow amplitude. To observe the micro-deformation of the fabric structure, appropriate specimens from picture frame test are sectioned and observed under the microscope. From the observation results, it is found that a picture frame test with a misaligned fibre orientation angle shows large differences in deformation between tensile and compressive tow directions.

  • PDF

Unit Cell Analysis of Satin Weave Composites Using Macroelements (수자직 복합재료 단위구조의 마크로요소해석)

  • 우경식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.35-41
    • /
    • 1997
  • Unit cell analyses were peformed to study the engineering properties of satin weave textile composites. Two 5-harness satin weave layers with fiber tow shifts were modeled by unit cells and repeating boundary conditions were applied at the outer surface of the unit cells. Multi-field macroelements were employed to consider the microstructure details and to effectively reduce computer memory requirements. Preliminary results indicated that the engineering properties of 5-harness satin weave textile composites can vary significantly according to the manner how the adjacent fiber tows were arranged in stacking.

  • PDF

An Automated Visual Inspection System for Wire Harnesses (접속케이블의 품질검사를 위한 자동시각검사 시스템)

  • Lee, Moon-Kyu;Yun, Chan-Kyun
    • IE interfaces
    • /
    • v.9 no.1
    • /
    • pp.63-71
    • /
    • 1996
  • A wire harness is an assembly cables and/or wires to transmit signals between electronic assemblies in automobiles and electronic appliances. Inspection of such a wire harness is to check the sequence of assembled cabled each of which is identified by its own color. This paper presents an automated visual inspection system for wire harnesses incorporating back-propagation neural network as a color identification device. The tests performed by using real test specimens show that the inspection system works well enough.

  • PDF

Development of Analysis Method and Experimental Equipment for Fatigue Durability of Automotive Wire Harness System (자동차 와이어 하네스 피로내구 해석 방법론 및 시험기기 개발)

  • Lee, Heung-Shik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.3
    • /
    • pp.199-205
    • /
    • 2013
  • In this study, the methodology for the fatigue life prediction using finite element method(FEM) in wire, bundle and assembly level of the wire harness system and the development of the fatigue life test machine for the numerical analysis are investigated. To obtain stress-life(S-N) histories of the componential wires of the system, five kinds of wires are prepared and applied to the repeated bending motion using developed fatigue life test equipment. Equivalent model of the wire from the rule of mixtures theory is used for the material modeling of sheath and wire core combination. Contact conditions among the wires, taping conditions are established through the bundle level test and numerical bundle analysis. Wire and bundle level results are adopted for the assembly level analysis. For the assembly level analysis, real wire harness system including bundle and grommet is numerically modeled and applied contact condition between wires with real opening motion. The fatigue life more than 700,000 cycles of the assembly is obtained from the FEM, and it is confirmed that the result has good agreement with the experimental result.

A Study on TPS Migration in ATS - Focused on aircraft wire harness TPS (자동시험체계 TPS 이식에 관한 연구 -항공기 Wire Harness TPS를 중심으로)

  • Yoon, Myung-Seob;Park, Koo-Rack;Ko, Chang-Bae;Jeong, Young-Suk
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.277-283
    • /
    • 2018
  • This paper is a study of TPS Migration to a multi-purpose ATS which is used for functional testing of Avionics parts. The dedicated ATS used for the performance test of avionics parts has a lot of difficulties in domestic MRO companies that carry out maintenance of high-level avionics ranging from tens of thousands won to several hundreds of billions won. For this reason, in this paper, I have studied the procedure of TPS migration to use the wire-harness in generators used in A aircraft, which is a maintenance product using a dedicated ATS, as a general-purpose ATS. Through the proposed study, We confirmed the 100% performance verification after the TPS migration from the proprietary to the general purpose. It is possible to expand infinitely through the standardization of the procedure.

A Study on Making Fabric Images According to Fancy Yarn Structures Using the Computer (컴퓨터를 이용한 장식사의 구조 요인에 따른 직물이미지 제작에 관한 연구)

  • Sul, Jung-Hwa
    • Fashion & Textile Research Journal
    • /
    • v.7 no.1
    • /
    • pp.56-62
    • /
    • 2005
  • Fancy Yarn has developed diverse textures in fabrics, reducing the time in yarn and fabric production or apparel making in order to develop creative goods. In this study aimed to propose the use of a 4D box system to make fancy yarn shapes with loops, knops and spirals and the like. The change in texture was analysed and simulated to produce a suitable fabric image by using the fancy yarns fabric. The results are as follows. The plain weave, 2/2 basket weave, 2/2 twill weave, 2/2 2 complete broken weaves, and 5 harness sateen weaves were woven and a fabric image formed. In the case of the loop and the knop yarns fabric image, compared to the twisted fabric image the surface was covered by loops or some parts became partially black. In the case of the spiral shape it showed pattern continuity in spiral shapes 1, 2 and 3. The more twisted spirals produced a diamond shaped pattern or a twill line and a herring bone shaped twill line. An evenly distributed black fabric image appeared in 5 harness sateen weave. For the loop shape the broken weave or 5 harness sateen weave was produced; basket weave and broken weave for the knop yarn 1 or knop yarn 2; and for the spiral shape a plain fabric or 5 harness sateen weave were produced much similar to the fabric image. The surface texture of the mapped image compared to the twisted fabric image produces fancy yarn fabric images covered with loops or irregular spots caused by the knop and the spiral. Therefore it is appropriate or suitable for the simulation of tweed or woolen wool fabrics. The fabric image which produced consistent and continuous lines is therefore more suitable for simulations of twill or herringbone fabric images.

Life Prediction of Automotive Vehicle's W/H System Using Finite Element Analysis (차량용 와이어하네스의 유한요소해석을 이용한 대변형 내구수명 예측)

  • Kim, Byeong-Sam;Kang, Ki-Jun;Park, Kyoung-Woo;Noh, Kwang-Doo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.139-144
    • /
    • 2010
  • In the automotive electronic industry, the development of vehicle's door wiring harness (W/H) system for new applications is driven continuously for the low-cost and the high strength performance for electronic components. The problem of the fatigue strength estimation for materials and components containing natural defects, inclusions, or inhomogeneities is of great importance both scientifically and industrially. This article gives some insight into the dimensioning process with special focus on the fatigue analysis of wiring harness (W/H) in vehicle's door structures. The results from endurance tests using slim test specimens were compared with the results from FEM for predicted fatigue life. The expectation for the life of components is affected by the microstructural features with complex stress state arising from the combined service loading and residual stresses.

Thermal Conductivity of Carbon-Phenolic 8-Harness Satin Weave Composite (탄소/페놀릭 8-매 주자직 복합재료의 열전도도)

  • Woo, Kyeong-Sik;Goo, Nam-Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.18-25
    • /
    • 2003
  • In this paper, thermal conductivities of carbon-phenolic 8-harness satin weave composite, ACP302, were measured and predicted. In the analysis, the satin weave unit cell was identified and modeled discretely by 3-dimensional finite elements, considering the interlaced fiber tow architecture microscopically. At the unit cell boundary, the corresponding periodic boundary conditions were applied. The results were analyzed to investigate the effect of microstructural parameters such as stacking phase shifts, waviness ratio, and fiber volume fraction. The conductivities were also obtained by experiments and compared with the numerical results.

LRU Layout Method Using Genetic Algorithm (유전 알고리즘을 이용한 LRU 최적배치 방법)

  • Back, Sun-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.10
    • /
    • pp.849-858
    • /
    • 2021
  • It is difficult to establish a quantitative standard because there are many factors to consider, such as environmental conditions, airworthiness, and maintainability, in determining the installation location of equipment in an aircraft. In addition, as the number of equipment increases, the design proposal increases exponentially, so the design is proceeding depending on the experience of the designer much in order to review it within a limited time schedule. In this paper, a method of calculating the length and weight of the wiring harness according to the location of the equipment and a method of optimizing the weight of the wiring harness and the CG of the equipment using genetic algorithms are described in order to create a quantitative standard useful by comparing the optimal design and the actual design.