• Title/Summary/Keyword: Harmonics and reactive power

Search Result 132, Processing Time 0.022 seconds

A novel method for improvement of the output voltage waveform of SVC using PAM inverter (PAM 인버어터를 이용한 SVC의 출력전압 파형 개선에 관한 연구)

  • 서윤철;모창호;김영민;박현철;유철로
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.67-70
    • /
    • 1996
  • This paper presents SVC which use PAM method and eliminate harmonics. Inverter is connected directly so that SVC improve output voltage waveform into 24 steps. Inverter output waveform THD is reduced to 6.89%. Leading control of reactive power generated in power system is possible. Snubber is added to reduce switching loss.

  • PDF

A new control method of single-phase hybrid active power filter (단상 하이브리드 능동전력필터의 새로운 제어법)

  • Lim Myoung Kuen;Kim Jin Sun;Kim Young Seok;Shin Jae Wha
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1145-1147
    • /
    • 2004
  • This paper proposed a new control method for single-phase hybrid active power filter. The proposed algorithm can change single phase system into the orthogonal system which has two phases giving time-delay in regular single phas and making the imaginary second phase. It can make orthogonal system like as being used in $3{\phi}/2{\phi}$ transformation with two phases. It can do complex calculation which calculates intantaneous reactive power. Istead of existing method applying to intantaneous reactive power theory in fixed reference frame, this paper proposed the algorithm which has advantage over reducing harmonics using rotating reference frame. It verified the effectiveness the proposed method through simulation and experiment.

  • PDF

Implementation of a 35KVA Converter Base on the 3-Phase 4-Wire STATCOMs for Medium Voltage Unbalanced Systems

  • Karimi, Mohammad Hadi;Zamani, Hassan;Kanzi, Khalil;Farahani, Qasem Vasheghani
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.877-883
    • /
    • 2013
  • This paper discussed a transformer-less shunt static synchronous compensator (STATCOM) with consideration of the following aspects: fast compensation of the reactive power, harmonic cancelation and reducing the unbalancing of the 3-phase source side currents. The STATCOM control algorithm is based on the theory of instantaneous reactive power (P-Q theory). A self charging technique is proposed to regulate the dc capacitor voltage at a desired level with the use of a PI controller. In order to regulate the DC link voltage, an off-line Genetic Algorithm (GA) is used to tune the coefficients of the PI controller. This algorithm arranged these coefficients while considering the importance of three factors in the DC link voltage response: overshoot, settling time and rising time. For this investigation, the entire system including the STATCOM, network, harmonics and unbalancing load are simulated in MATLAB/SIMULINK. After that, a 35KVA STATCOM laboratory setup test including two parallel converter modules is designed and the control algorithm is executed on a TMS320F2812 controller platform.

EMTP Simulation of Bipolar HVDC System (바이폴 HVDC 시스템의 EMTP 시뮬레이션)

  • Kwak, Joo-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1053-1055
    • /
    • 1998
  • Using EMTP model which describes bipolar HVDC system, switching level simulation results are presented in this paper. Voltage synchronization at point of common coupling, gate pulse generation and current control loops are represented in TACS module. The system consists of 100 km submarine cable rated 300 MW and 12 pulse rectifier and inverter stations which are connected to equivalent three-phase sources and loads through the 154 kV AC lines, respectively. In convertor stations, harmonic filters and capacitor banks are equipped to cancel out the harmonics generated by converters and to supply the required reactive power.

  • PDF

Novel Control Method for a Hybrid Active Power Filter with Injection Circuit Using a Hybrid Fuzzy Controller

  • Chau, MinhThuyen;Luo, An;Shuai, Zhikang;Ma, Fujun;Xie, Ning;Chau, VanBao
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.800-812
    • /
    • 2012
  • This paper analyses the mathematical model and control strategies of a Hybrid Active Power Filter with Injection Circuit (IHAPF). The control strategy based on the load harmonic current detection is selected. A novel control method for a IHAPF, which is based on the analyzed control mathematical model, is proposed. It consists of two closed-control loops. The upper closed-control loop consists of a single fuzzy logic controller and the IHAPF model, while the lower closed-control loop is composed of an Adaptive Network based Fuzzy Inference System (ANFIS) controller, a Neural Generalized Predictive (NGP) regulator and the IHAPF model. The purpose of the lower closed-control loop is to improve the performance of the upper closed-control loop. When compared to other control methods, the simulation and experimental results show that the proposed control method has the advantages of a shorter response time, good online control and very effective harmonics reduction.

Effects of a Static Synchronous Series Compensator (SSSC) Based on a Soft Switching 48-Pulse PWM Inverter on the Power Demand from the Grid

  • Ustun, Taha Selim;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.85-90
    • /
    • 2010
  • In this paper the effects of a Static Synchronous Series Compensator, which is constructed with a 48-pulse inverter, on the power demand from the grid are studied. Extensive simulation studies were carried out in the MATLAB simulation environment to observe the compensation achieved by the SSSC and its effects on the line voltage, line current, phase angle and real/reactive power. The designed device is simulated in a power system which is comprised of a three phase power source, a transmission line, line inductance and load. The system parameters such as line voltage, line current, reactive power Q and real power P transmissions are observed both when the SSSC is connected to and disconnected from the power system. The motivation for modeling a SSSC from a multi-pulse inverter is to enhance the voltage waveform of the device and this is observed in the total harmonic distortion (THD) analysis performed at the end of the paper. According to the results, the power flow and phase angle can be controlled successfully by the new device through voltage injection. Finally a THD analysis is performed to see the harmonics content. The effect on the quality of the line voltage and current is acceptable according to international standards.

Interfacing of A.C. System with HVDC Schemes : A Comparison of Filter Types (HVDC 구성을 갖는 A.C. System의 필터 유형 비교에 관한 연구)

  • Kim, Chan-Ki;Choy, Young-Do
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.373-375
    • /
    • 2005
  • AC harmonic filters connected to the terminals of HVDC schemes fulfill two primary functions: to compensate for part or all of the reactive power absorbed by the converter, and to limit to an acceptable level the voltage distortion caused by the converter harmonics. this paper makes a direct comparison between tuned filters and damped filters, each designed for a long HVDC transmission scheme. It Is hoped that by comparing the two approaches a syudy to determine the suitability of filter types to AC systems can be promoted.

  • PDF

A New Load Aggregation Method in Consideration of Non-linear Load (비선형 부하를 고려한 새로운 부하합성 기법)

  • Lee, Jong-Pil;Kim, Sung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.168-173
    • /
    • 2012
  • The aggregation of group loads, which consists of the linear and the non-linear systems, yields the error involved in the reactive power aggregation, which is greater than the active power aggregation in the component based load modeling. Each individual reactive power in a group load affects the aggregated load different from composition rate. This paper proposes a new method that determines the degree of impacts by adjusting the coefficient of weight factors of each load using the least squares error method. The effectiveness of proposed algorithm is demonstrated by simulating three aggregation cases.

Design of Modified Slip-Mode Frequency Shift Islanding Detection Method for Power Quality Improvement (Slip-Mode Frequency Shift 단독운전 검출 기법의 정상상태 전력 품질 개선)

  • Kim, Dong-Uk;Kim, Sungmin
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.539-547
    • /
    • 2018
  • Grid-connected inverter is required to cut off the power supplied to the grid at the islanding condition, immediately. For this reason, an islanding detection is an indispensable function for grid-connected distributed generation system. Slip-Mode frequency Shift (SMS) islanding detection method is very popular method to determine the grid state. SMS method supplies the reactive power to the load according to the grid frequency. In the islanding condition of grid, this injected reactive power pulls out the grid frequency from the allowable range, then the inverter system can detect the islanding condition of the grid. The SMS method can detect the islanding state well and does not generate any harmonics of the grid current. However, the reactive power would be generated and the power quality is reduced even though the grid is not islanding condition, but normal condition. In this paper, a modified SMS method is proposed to remove the reactive power in the normal condition. The performance of the proposed method is evaluated by 600W single phase inverter experimental results.

A Study on the Unity Power Factor Converter to Inhibit Harmonics of Distributed Line (배전선로의 고조파 성분억제가 가능한 단위역률 전력변환기 개발에 관한 연구)

  • 박성준;변영복;권순재;김철우
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.5
    • /
    • pp.57-63
    • /
    • 1995
  • In this paper, 3-Phase PWM AC/DC step up type converter that reduces the harmonics and reactive power of the distribution line is analyzed and the stable control method is proposed as controlling the sinusoidal phase current and phase voltage in phase. In implementation of controller, simple control algorithm is derived as the instantaneous voltage control methods without current sensor. The instantaneous voltage is controled by PWM method and the switching frequency is presented in low range 3 [kHz] for reducing the switching loss. In case of active load, four quadrants operation converter regenerate power from the load to the power source is conducted. Through the computer simulation and experimentation, the proposed control method is justified.

  • PDF