• Title/Summary/Keyword: Harmonic power sharing

Search Result 17, Processing Time 0.022 seconds

Improved Reactive Power Sharing and Harmonic Voltage Compensation in Islanded Microgrids Using Resistive-Capacitive Virtual Impedance

  • Pham, Minh-Duc;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1575-1581
    • /
    • 2019
  • Due to the mismatched line impedance among distributed generation units (DGs) and uncontrolled harmonic current, the droop controller has a number of problems such as inaccurate reactive power sharing and voltage distortion at the point of common coupling (PCC). To solve these problems, this paper proposes a resistive-capacitive virtual impedance control method. The proposed control method modifies the DG output impedance at the fundamental and harmonic frequencies to compensate the mismatched line impedance among DGs and to regulate the harmonic current. Finally, reactive power sharing is accurately achieved, and the PCC voltage distortion is compensated. In addition, adaptively controlling the virtual impedance guarantees compensation performance in spite of load changes. The effectiveness of the proposed control method was verified by experimental results.

An Enhanced PCC Harmonic Voltage Mitigation and Reactive Power Sharing in Islanded Microgrid

  • Pham, Minh-Duc;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.138-140
    • /
    • 2018
  • Parallel distributed generators (DGs) in the islanded microgrid are generally operated autonomously by means of the droop control scheme. However, the traditional droop control methods which use the P-${\omega}$ and Q-E curve to share power between DGs are still concerned to improve the accuracy of reactive power sharing. Moreover, the uncontrolled harmonic power reduces the point of common coupling (PCC) voltage quality and microgrid stability. In order to solve these problems, this paper proposes an enhanced PCC harmonic control strategy and an improved reactive power sharing control scheme. Based on the low bandwidth communications, a secondary control is implemented with both central controller and local controller. The effectiveness of the proposed control scheme is analyzed through the simulation.

  • PDF

An Enhanced Instantaneous Circulating Current Control for Reactive Power and Harmonic Load Sharing in Islanded Microgrids

  • Lorzadeh, Iman;Abyaneh, Hossein Askarian;Savaghebi, Mehdi;Lorzadeh, Omid;Bakhshai, Alireza;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1658-1671
    • /
    • 2017
  • To address the inaccurate load demand sharing problems among parallel inverter-interfaced voltage-controlled distributed generation (DG) units in islanded microgrids (MGs) with different DG power ratings and mismatched feeder impedances, an enhanced voltage control scheme based on the active compensation of circulating voltage drops is proposed in this paper. Using the proposed strategy, reactive power and harmonic currents are shared accurately and proportionally without knowledge of the feeder impedances. Since the proposed local controller consists of two well-separated fundamental and harmonic voltage control branches, the reactive power and harmonic currents can be independently shared without having a remarkable effect on the amplitude or quality of the DGs voltage, even if nonlinear (harmonic) loads are directly connected at the output terminals of the units. In addition, accurate load sharing can also be attained when the plug-and-play performance of DGs and various loading conditions are applied to MGs. The effects of communication failures and latency on the performance of the proposed strategy are also explored. The design process of the proposed control system is presented in detail and comprehensive simulation studies on a three-phase MG are provided to validate the effectiveness of the proposed control method.

A Harmonic Circulation Current Reduction Method for Parallel Operation of UPS with a Three-Phase PWM Inverter

  • Kim Kyung-Hwan;Kim Wook-Dong;Hyun Dong-Suk
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.160-165
    • /
    • 2005
  • In a parallel operation of UPS, there are two types of circulating currents between UPS. One is the low order circulating current with a fundamental frequency caused by the amplitude and phase differences of UPS output voltages, and the other is the harmonic circulating current with PWM switching frequency caused by non-synchronized PWM waveforms among UPS. The elimination of the low order circulating current is essential for optimal load sharing in parallel operations of UPS, which can be accomplished by the phase and magnitude control at each UPS. The harmonic circulating current may cause troubles and deteriorate in performance of the controller for optimal load sharing in parallel operation of UPS. This paper presents a PWM synchronizing method to eliminate the harmonic circulation current in parallel operation of UPS. The effectiveness of the proposed scheme has been investigated and verified through experiments by a 50kVA UPS.

Control Strategy for Selective Compensation of Power Quality Problems through Three-Phase Four-Wire UPQC

  • Pal, Yash;Swarup, A.;Singh, Bhim
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.576-582
    • /
    • 2011
  • This paper presents a novel control strategy for selective compensation of power quality (PQ) problems, depending upon the limited rating of voltage source inverters (VSIs), through a unified power quality conditioner (UPQC) in a three-phase four-wire distribution system. The UPQC is realized by the integration of series and shunt active power filters (APFs) sharing a common dc bus capacitor. The shunt APF is realized using a three-phase, four-leg voltage source inverter (VSI), while a three-leg VSI is employed for the series APF of the three-phase four-wire UPQC. The proposed control scheme for the shunt APF, decomposes the load current into harmonic components generated by consumer and distorted utility. In addition to this, the positive and negative sequence fundamental frequency active components, the reactive components and harmonic components of load currents are decomposed in synchronous reference frame (SRF). The control scheme of the shunt APF performs with priority based schemes, which respects the limited rating of the VSI. For voltage harmonic mitigation, a control scheme based on SRF theory is employed for the series APF of the UPQC. The performance of the proposed control scheme of the UPQC is validated through simulations using MATLAB software with its Simulink and Power System Block set toolboxes.

A Novel Control Strategy for Input-Parallel-Output-Series Inverter System

  • Song, Chun-Wei;Zhao, Rong-Xiang;Lin, Wang-Qing;Zeng, Zheng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.85-90
    • /
    • 2012
  • This paper presents a topology structure and control method for an input-parallel-output-series(IPOS) inverter system which is suitable for high input current, high output voltage, and high power applications. In order to ensure the normal operation of the IPOS inverter system, the control method should achieve input current sharing(ICS) and output voltage sharing(OVS) among constituent modules. Through the analysis in this paper, ICS is automatically achieved as long as OVS is controlled. The IPOS inverter system is controlled by a three-loop control system which is composed of an outer common-output voltage loop, inner current loops and voltage sharing loops. Simulation results show that this control strategy can achieve low total harmonic distortion(THD) in the system output voltage, fast dynamic response, and good output voltage sharing performance.

Digital Load Sharing Method for Converter parallel Operation (컨버터 병렬운전을 위한 디지털 부하분담 기법)

  • Yoo, Kwang-Min;Kim, Won-Yong;Park, Seung-Hee;Lee, Dong-Hoo;Kim, Yun-Sung;Jeong, Yu-Seok;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.150-157
    • /
    • 2012
  • This paper presents CAN-based parallel-operation and load-sharing techniques for the communication server power supply. With the load information obtained through CAN communication, each modules performs its current control independently and the power unbalance caused by impedance differences of converter modules can be reduced. In conventional method, slave modules are controlled by master module. On the other hand, the proposed load share algorithm uses the Multi-Master method. Therefore, accurate load sharing can be accomplished by the reference structure of each module's average current. Each converter has two stages and it is separated into PFC, which is responsible for harmonic regulation, and LLC resonant converter, which controls output voltage. To verified the performance of the proposed method, two 2KW prototypes has been implemented and experimented.

New Battery Balancing Circuit using Magnetic Flux Sharing

  • Song, Sung-Geun;Park, Seong-Mi;Park, Sung-Jun
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.194-201
    • /
    • 2014
  • To increase the capacity of secondary cells, an appropriate serial composition of the battery modules is essential. The unbalance that may occur due to the series connection in such a serial composition is the main cause for declines in the efficiency and performance of batteries. Various studies have been conducted on the use of a passive or active topology to eliminate the unbalance from the series circuit of battery modules. Most topologies consist of a complex structure in which the Battery Management System (BMS) detects the voltage of each module and establishes the voltage balancing in the independent electrical power converters installed on each module by comparing the module voltage. This study proposes a new magnetic flux sharing type DC/DC converter topology in order to remove voltage unbalances from batteries. The proposed topology is characterized by a design in which all of the DC/DC convertor outputs connected to the modules converge into a single transformer. In this structure, by taking a form in which all of the battery balancing type converters share magnetic flux through a single harmonic wave transformer, all of the converter voltages automatically converge to the same voltage. This paper attempts to analyze the dynamic properties of the proposed circuit by using a Programmable Synthesizer Interface Module (PSIM), which is useful for power electronics analysis, while also attempting to demonstrate the validity of the proposed circuit through experimental results.

Design Considerations for Auto-Connected Multi-Pulse Rectiviers for High Power AC Motor Drives

  • ;Prasad N. Enjeti
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.5
    • /
    • pp.413-422
    • /
    • 1999
  • Auto-connected multipulse(12/24pulse) rectifier schemes are cost effective methods for reducing line current hamonics in PWM drive systems. Employing these schemes to enhance utility power quality requires careful attention to several design considerations In particular, excursion of dc-link voltage at no load, effect of pre-existing voltage distortion, impedance mismatches, unequal diode drops on rectifier current sharing and performance, are fully analyzed, Several corrective measures to improve the performance of 12/24­pulse rectifier systems are also discussed. Finally, experimental results on a 460V, 60Hz 400kVA commercial ASD, retrofitted with 12/24pulse rectifier systems are discussed in detail.

  • PDF

A Study on Control Scheme of 3-Phase Active Power Filter for Harmonic Elimination and Reactive Power Compensation (고조파 제거 및 무효전력 보상을 위한 3상 전력용 능동 필터의 제어에 관한 연구)

  • Park, Min-Ho;Choe, Gyu-Ha;Choe, Jae-Young
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.291-295
    • /
    • 1989
  • The conventional Optimized Injection Method is a good control technique but can't be applied to 3-phase a.e. line. In this paper, a new technique, Time-sharing Method based on basic principle of conventional Optimized Injection Method is introduced to hold the independence of each phase, and the structure of power circuit is improved to realize the new control method. By this scheme it is possible to simplify the control circuit and power circuit. The characteristic of the new control method are investigated and compared with conventional Optimized Injection Method by computer simulation.

  • PDF