• Title/Summary/Keyword: Harmonic estimation

Search Result 160, Processing Time 0.088 seconds

An Improved High-Resolution Rotor Position Estimation Using Gain Scheduled Speed Observer in PMSM Drives with Hall-Effect Position Sensors (홀-이펙트 위치센서를 갖는 PMSM 드라이브에서 이득 스케줄 속도관측기에 의한 향상된 고 해상도 회전자 위치추정)

  • Kim, Sam-Young;Byun, Hang-Gil;Ko, Bong-Jin;Park, Seung-Yub
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1809-1815
    • /
    • 2010
  • This paper presents an improved method for high-resolution rotor position estimation in the permanent magnet synchronous motor (PMSM) drives with low-resolution Hall-effect sensors. The proposed method adopts a gain-scheduled full-order speed observer. Since the quantized position signal, which is obtained from Hall-effect sensors, is basically used as the input of the observer, the sixth-order harmonics are essentially included in the estimated position. To eliminate the harmonic components, the quantized position is linearized by a linear extrapolation based on the estimated average speed and futhermore the speed-depentent observer gain scheduling strategy is developed. The observer gain is also scheduled by considering the motor acceleration to improve the dynamic performance according to the changes of the motor speed and load. Several experiments are performed for 800W PMSM drive and the results demonstrate the effectiveness of the proposed method.

A Study on the Wear Estimation of End Mill Using Sound Frequency Analysis (음향주파수 분석에 의한 엔드밀의 마모상태 추정에 관한 연구)

  • Lee, Chang-Hee;Cho, Taik-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1287-1294
    • /
    • 2003
  • The wear process of end mill is so complicated process that a more reliable technique is required for the monitoring and controlling the tool life and its performance. This research presents a new tool wear monitoring method based on the sound signal generated on the machining. The experiment carried out continuous-side-milling for 4 cases using the high-speed-steel end mill under wet condition. The sound pressure was measured at 0.5m from the cutting zone by a dynamic microphone, and was analyzed at frequency domain. As the cutter impacts the workpiece surface, a situation of farced vibration arises in which the dominant forcing frequency is equal to the tooth passing frequency of the cutter. The tooth passing frequency appears as a harmonics form, and end mill flank wear is related with the first harmonic. It is possible to detect end . mill flank wear. This paper proposed the new method of the end mill wear detection.

Stochastic Estimation of Phasor Voltage of Harmonics Using Multivariate Gram-Charlier Type A Series (다변수 그램-샬리어 급수 A형을 이용한 고조파 페이서 전압의 확률적 예측 계산)

  • Kim, Tae-Hyun;Park, In-Gyu;Park, Jong-Keun;Kang, Young-Shuk
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.469-473
    • /
    • 1987
  • This paper presents a method to estimate p.d.f.(probability density function) of harmonic phasor voltage. Because the quantity of harmonics is not fixed, stochastic analysis of harmonics is needed. Because it is impossible to obtain p.d.f. of voltage from p.d.f. of current directly, the moments of voltage and current are used. Firstly, the moments of current is calculated from p.d.f. of current. Secondly, the moments of voltage are calculated from the moments of current using the linearity of the moments. Finally, p.d.f. of voltage is estimated from the moments of voltage using Gram-Charlier Type A Series. [1] The moments of the p.d.f. obtained by the series and of the true p.d.f. is same up to given finite moments. Because current and voltage of harmonics are represented as not instantaneous values but phasors, the estimated value can be compared with the measured value and harmonic phasor voltage can be analyzed when the p.d.f. of phase is nonuniform as well as uniform.

  • PDF

Control Strategy for Three-Phase Grid-Connected Converters under Unbalanced and Distorted Grid Voltages Using Composite Observers

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.469-478
    • /
    • 2013
  • This paper proposes a novel scheme for the current controller for the grid-side converter (GSC) of permanent-magnet synchronous generator (PMSG) wind turbines to eliminate the high-order harmonics in the grid currents under grid voltage disturbances. The voltage unbalance and harmonics in three-phase systems cause grid current distortions. In order to mitigate the input current distortions, multi-loop current controllers are applied, where the positive-sequence component is regulated by proportional-integral (PI) controllers, and the negative-sequence and high-order harmonic components are regulated by proportional-resonance (PR) controllers. For extracting the positive/negative-sequence and harmonic components of the grid voltages and currents without a phase delay or magnitude reduction, composite observers are applied, which give faster and more precise estimation results. In addition, an active damping method using PR controllers to damp the grid current component of the resonant frequency is employed to improve the operating stability of VSCs with inductor-capacitor-inductor (LCL) filters. The validity of the proposed method is verified by simulation and experimental results.

Estimation of Nonlinear Distortion in Communication Systems Using Random Digital Signals (랜덤 디지탈 신호를 사용한 통신 시스템의 비선형 왜곡 추정)

  • 손주신;조용수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.4
    • /
    • pp.660-668
    • /
    • 1994
  • In this paper, a new approach to estimate nonmlinear distortions (second-harmonic, second-intermodulation, third-harmonic, and third-intermodulation) in digital communication systems is proposed. In contrast to the relatively common sine-wave input approach which requires repetition of the same experiments by changing frequencies of oscillators and filters over the band of frequencies of interest, the proposed approach uses digital random input (transmitted signal in digital communication system) to adaptively estimate parameters of a nonlinear channel in time-domain. Nonlinear distortion of the channel is estimated on line by transforming the estimated parameters into frequency-domain. Comparison between the classical two-tone input approach and the proposed approach is made through computer simulation.

  • PDF

Estimation of Hydraulic Characteristics and Prediction of Groundwater Level in the Eastern Coastal Aquifer of Jeju Island (제주도 동부 해안대수층의 수리특성 산정과 지하수위 예측)

  • Jo, Si-Beom;Jeon, Byung-Chil;Park, Eun-Gyu;Choi, Kwang-Jun;Song, Sung-Ho;Kim, Gi-Pyo
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.661-672
    • /
    • 2014
  • Due to tidal force, it is very difficult to estimate the hydraulic parameters of high permeable aquifer near coastal area in Jeju Island. Therefore, to eliminate the impact of tidal force from groundwater level and estimate the hydraulic properties, tidal response technique has been mainly studied. In this study we have extracted 38 tidal constituents from groundwater level and harmonic constants including frequency, amplitude, and phase of each constituent using T_TIDE subroutine which is used to estimate oceanic tidal constituents, and then we have estimated hydraulic diffusivity associated with amplitude attenuation factor(that is the ratio of groundwater level amplitude to sea level amplitude for each tidal constituent) and phase lag(that is phase difference between groundwater level and sea level for each constituent). Also using harmonic constants for each constituent, we made the sinusoidal wave and then we constructed the synthesized wave which linearly combined sinusoidal wave. Finally, we could get residuals(net groundwater level) which was excluded most of tidal influences by eliminating synthesized wave from raw groundwater level. As a result of comparing statistics for synthesized level and net groundwater level, we found that the statistics for net groundwater level was more insignificant than those of synthesized wave. Moreover, in case of coastal aquifer which the impact of tidal force is even more than those of other environmental factors such as rainfall and groundwater yield, it is possible to predict groundwater level using synthesized wave and regression analysis of residuals.

Power Disturbance Detection using the Inflection Point Estimation (변곡점 추정을 이용한 전력선 신호의 이상현상 검출)

  • Iem, Byeong-Gwan
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.710-715
    • /
    • 2021
  • Power line signal can show disturbances due to various causes. Typical anomalies are temporary sag/swell of the amplitude, flat topped signal, and harmonic distortions. The disturbances need to be detected and treated properly for the quality of the power signal. In this study, the power disturbances are detected using the inflection points (IP). The inflection points are defined as points where local maxima/minima or the slope changes occur. The power line signal has a fixed IP pattern since it is basically sinusoidal, and it may have additional inflection points if there is any disturbance. The disturbance is detected by comparing the IP patterns between the normal signal and distorted signal. In addition, by defining a cost function, the time instant where the disturbance happens can be decided. The computer simulation shows that the proposed method is useful for the detection of various disturbances. The simple sag or swell signal only shows the amplitude changes at the detected inflection points. However, the flat top signal and harmonically distorted signal produce additional inflection points and large values in the cost function. These results can be exploited for the further processing of disturbance classification.

Estimation of the Lowest and Highest Astronomical Tides along the west and south coast of Korea from 1999 to 2017 (서해안과 남해안에서 1999년부터 2017년까지 최저와 최고 천문조위 계산)

  • BYUN, DO-SEONG;CHOI, BYOUNG-JU;KIM, HYOWON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.4
    • /
    • pp.495-508
    • /
    • 2019
  • Tidal datums are key and basic information used in fields of navigation, coastal structures' design, maritime boundary delimitation and inundation warning. In Korea, the Approximate Lowest Low Water (ALLW) and the Approximate Highest High Water (AHHW) have been used as levels of tidal datums for depth, coastline and vertical clearances in hydrography and coastal engineering fields. However, recently the major maritime countries including USA, Australia and UK have adopted the Lowest Astronomical Tide (LAT) and the Highest Astronomical Tide (HAT) as the tidal datums. In this study, 1-hr interval 19-year sea level records (1999-2017) observed at 9 tidal observation stations along the west and south coasts of Korea were used to calculate LAT and HAT for each station using 1-minute interval 19-year tidal prediction data yielded through three tidal harmonic methods: 19 year vector average of tidal harmonic constants (Vector Average Method, VA), tidal harmonic analysis on 19 years of continuous data (19-year Method, 19Y) and tidal harmonic analysis on one year of data (1-year Method, 1Y). The calculated LAT and HAT values were quantitatively compared with the ALLW and AHHW values, respectively. The main causes of the difference between them were explored. In this study, we used the UTide, which is capable of conducting 19-year record tidal harmonic analysis and 19 year tidal prediction. Application of the three harmonic methods showed that there were relatively small differences (mostly less than ±1 cm) of the values of LAT and HAT calculated from the VA and 19Y methods, revealing that each method can be mutually and effectively used. In contrast, the standard deviations between LATs and HATs calculated from the 1Y and 19Y methods were 3~7 cm. The LAT (HAT) differences between the 1Y and 19Y methods range from -16.4 to 10.7 cm (-8.2 to 14.3 cm), which are relatively large compared to the LAT and HAT differences between the VA and 19Y methods. The LAT (HAT) values are, on average, 33.6 (46.2) cm lower (higher) than those of ALLW (AHHW) along the west and south coast of Korea. It was found that the Sa and N2 tides significantly contribute to these differences. In the shallow water constituents dominated area, the M4 and MS4 tides also remarkably contribute to them. Differences between the LAT and the ALLW are larger than those between the HAT and the AHHW. The asymmetry occurs because the LAT and HAT are calculated from the amplitudes and phase-lags of 67 harmonic constituents whereas the ALLW and AHHW are based only on the amplitudes of the 4 major harmonic constituents.

Combination rules and critical seismic response of steel buildings modeled as complex MDOF systems

  • Reyes-Salazar, Alfredo;Valenzuela-Beltran, Federico;de Leon-Escobedo, David;Bojorquez-Mora, Eden;Barraza, Arturo Lopez
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.211-238
    • /
    • 2016
  • The Maximum seismic responses of steel buildings with perimeter moment resisting frames (MRF), modeled as complex MDOF systems, are estimated for several incidence angles of the horizontal components and the critical one is identified. The accuracy of the existing rules to combine the effects of the individual components is also studied. Two and three components are considered. The critical response does not occur for principal components and the corresponding incidence angle varies from one earthquake to another. The critical response can be estimated as 1.40 and 1.10 times that of the principal components, for axial load and interstory shears, respectively. The rules underestimate the axial load but reasonably overestimate the shears. The rules are not always inaccurate in the estimation of the combined response for correlated components. On the other hand, totally uncorrelated (principal) components are not always related to an accurate estimation. The correlation of the individual effects (${\rho}$) may be significant, even for principal components. The rules are not always associated to an inaccurate estimation for large values of ${\rho}$, and small values of ${\rho}$ are not always related to an accurate estimation. Only for perfectly uncorrelated harmonic excitations and elastic analysis of SDOF systems, the individual effects of the components are uncorrelated and the rules accurately estimate the combined response. The degree of correlation of the components, the type of structural system, the response parameter under consideration, the location of the structural member and the level of structural deformation must be considered while estimating the level of underestimation or overestimation.

System Identification of Aerodynamic Coefficients of F-16XL (ICCAS 2004)

  • Seo, In-Yong;Pearson, Allan E.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.383-388
    • /
    • 2004
  • This paper presents the aerodynamic coefficient modeling with a new model structure explored by Least Squares using Modulating Function Technique (LS/MFT) for an F-16XL airplane using wind tunnel data supplied by NASA/LRC. A new model structure for aerodynamic coefficient was proposed, one that considered all possible combination terms of angle of attack ${\alpha}$(t) and ${\alpha}$(t) given number of harmonics K, and was compared with Pearson's model, which has the same number of parameters as the new model. Our new model harmonic results show better agreement with the physical data than Pearson's model. The number of harmonics in the model was extended to 6 and its parameters were estimated by LS/MFT. The model output of lift coefficient with K=6 correspond reasonably well with the physical data. In particular, the estimation performances of four aerodynamic coefficients were greatly improved at high frequency by considering all harmonics included in the input${\alpha}$(t), and by using the new model. In addition, the importance of each parameter in the model was analyzed by parameter reduction errors. Moreover, the estimation of three parameters, i.e., amplitude, phase and frequency, for a pure sinusoid and a finite sum of sinusoids- using LS/MFT is investigated.

  • PDF