• Title/Summary/Keyword: Harmonic detection

Search Result 188, Processing Time 0.026 seconds

Inrush Current Detection of Power Transformer using Flux-current Derivative Curve (자속-전류비율곡선을 이용한 전력용 변압기의 여자돌입검출)

  • Kim, S.K.;Park, C.W.;Shin, M.C.;Suh, H.S.;Jang, B.T.;Kim, I.D.;Kim, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.186-189
    • /
    • 1996
  • Convential inrush current detection method is used to harmonic restraint method by filtered second frequency component. Nowadays this technique must be modified because harmonics are occurred in steady state of power system. A purpose of this study is to develop of inrush current detection relaying algorithm for power transformer based on flux-current derivative curve method. We used the relaying signals obtained from EMTP simulation.

  • PDF

Faults Detection of Industrial Gearbox using an Envelope Analysis (포락선 분석을 이용한 산업용 기어박스의 결함 검출)

  • Park, Y.J.;Lee, G.H.;Lee, J.J.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.2
    • /
    • pp.82-88
    • /
    • 2009
  • This study was conducted to detect faults in a gearbox comprised of gears, bearings and shafts. The envelope analysis was used as a method of detection, which could detect breakage and pitting of gears and bearings, and misalignment of shafts effectively. Vibration measured at the increaser was analyzed to characterize the faults. When the increaser has a defect, peaks with a constant period appear in the time history of vibration and its harmonic components also in the envelope spectrum. The envelope analysis showed that a crack in the stepped output shaft caused the increaser to generate the abnormal peaks.

An application of operational deflection shapes and spatial filtration for damage detection

  • Mendrok, Krzysztof;Wojcicki, Jeremi;Uhl, Tadeusz
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1049-1068
    • /
    • 2015
  • In the paper, the authors propose the application of operational deflection shapes (ODS) for the detection of structural changes in technical objects. The ODS matrix is used to formulate the spatial filter that is further used for damage detection as a classical modal filter (Meirovitch and Baruh 1982, Zhang et al. 1990). The advantage of the approach lies in the fact that no modal analysis is required, even on the reference spatial filter formulation and other components apart from structural ones can be filtered (e.g. harmonics of rotational velocity). The proposed methodology was tested experimentally on a laboratory stand, a frame-like structure, excited from two sources: an impact hammer, which provided a wide-band excitation of all modes, and an electro-dynamic shaker, which simulated a harmonic component in the output spectra. The damage detection capabilities of the proposed method were tested by changing the structural properties of the model and comparing the results with the original ones. The quantitative assessment of damage was performed by employing a damage index (DI) calculation. Comparison of the output of the ODS filter and the classical modal filter is also presented and analyzed in the paper. The closing section of the paper describes the verification of the method on a real structure - a road viaduct.

A Novel Active Anti-islanding Method for Grid-connected Photovoltaic Inverter

  • Jung, Young-Seok;Choi, Jae-Ho;Yu, Gwon-Jong
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.64-71
    • /
    • 2007
  • This paper proposes a novel active frequency drift (AFD) method to improve the islanding detection performance with minimum current harmonics. To detect the islanding phenomenon of grid-connected photovoltaic (PV) inverters concerning the safety hazards and possible damage to other electric equipment, anti-islanding methods have been described. The AFD method that uses chopping fraction (cf) enables the islanding detection to drift up (or down) the frequency of the voltage during the islanding situation. However, the performance of the conventional AFD method is inefficient and causes difficulty in designing the appropriate cf value to meet the limit of harmonics. In this paper, the periodic chopping fraction based on a novel AFD method is proposed. This proposed method shows the analytical design value of cf to meet the test procedure of IEEE Std. 929-2000 with power quality and islanding detection time. To verify the validation of the proposed method, the islanding test results are presented. It is confirmed that the proposed method has not only less harmonic distortion but also better performance of islanding detection compared with the conventional AFD method.

Method of Monitoring Forest Vegetation Change based on Change of MODIS NDVI Time Series Pattern (MODIS NDVI 시계열 패턴 변화를 이용한 산림식생변화 모니터링 방법론)

  • Jung, Myung-Hee;Lee, Sang-Hoon;Chang, Eun-Mi;Hong, Sung-Wook
    • Spatial Information Research
    • /
    • v.20 no.4
    • /
    • pp.47-55
    • /
    • 2012
  • Normalized Difference Vegetation Index (NDVI) has been used to measure and monitor plant growth, vegetation cover, and biomass from multispectral satellite data. It is also a valuable index in forest applications, providing forest resource information. In this research, an approach for monitoring forest change using MODIS NDVI time series data is explored. NDVI difference-based approaches for a specific point in time have possible accuracy problems and are lacking in monitoring long-term forest cover change. It means that a multi-time NDVI pattern change needs to be considered. In this study, an efficient methodology to consider long-term NDVI pattern is suggested using a harmonic model. The suggested method reconstructs MODIS NDVI time series data through application of the harmonic model, which corrects missing and erroneous data. Then NDVI pattern is analyzed based on estimated values of the harmonic model. The suggested method was applied to 49 NDVI time series data from Aug. 21, 2009 to Sep. 6, 2011 and its usefulness was shown through an experiment.

Implementation of An 1.5Gbit/s Wireless Data Transmission System at 300GHz Band (300GHz 대역 1.5Gbit/s 무선 데이터 전송 시스템 구현)

  • Lee, Won-Hui;Chung, Tae-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2011
  • In this paper, an 1.5Gbit/s wireless data transmission system using the carrier frequency of 300 GHz band was implemented. The RF front-end was composed of schottky diode sub-harmonic mixer, frequency tripler, and horn antennas for transmitter and receiver, respectively. The LO frequencies of sub-harmonic mixer are 150GHz for transmit chain and 156GHz for receive chain. The ASK(Amplitude Shift Keying) modulation was used in the transmitter and the envelope detection method was used in the heterodyne receiver. The conversion loss of sub-harmonic mixer and implementation system loss were measured to be 9.8dB and 1.2dB, respectively. The 1.5Gbit/s video signal with HD-SDI format was transmitted over wireless distance of 40cm without optical lens(4.2m with optical lens) and displayed on HDTV at the transmitted average output power of $20{\mu}W$.

Vital Sign Sensor Based on Second Harmonic Frequency Drift of Oscillator (발진기의 2채배 고조파 주파수 천이를 이용한 생체신호 측정센서)

  • Ku, Ki-Young;Hong, Yunseog;Lee, Hee-Jo;Yun, Gi-Ho;Yook, Jong-Gwan;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.299-306
    • /
    • 2016
  • In this paper, a vital sign sensor based on impedance variation of resonator is proposed to detect the respiration and heartbeat signals within near-field range as a function of the separation distance between resonator and subject. The sensor consists of an oscillator with a built-in planar type patch resonator, a diplexer for only pass the second harmonic frequency, amplifier, SAW filter, and RF detector. The cardiac activity of a subject such as respiration and heartbeat causes the variation of the oscillation frequency corresponding impedance variation of the resonator within near-field range. The combination of the second harmonic oscillation frequency deviation and the superior skirt frequency of the SAW filter enables the proposed sensor to extend twice detection range. The experimental results reveal that the proposed sensor placed 40 mm away from a subject can reliably detect respiration and heartbeat signals.

Feature Extraction Algorithm for Distant Unmmaned Aerial Vehicle Detection (원거리 무인기 신호 식별을 위한 특징추출 알고리즘)

  • Kim, Juho;Lee, Kibae;Bae, Jinho;Lee, Chong Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.114-123
    • /
    • 2016
  • The effective feature extraction method for unmanned aerial vehicle (UAV) detection is proposed and verified in this paper. The UAV engine sound is harmonic complex tone whose frequency ratio is integer and its variation is continuous in time. Using these characteristic, we propose the feature vector composed of a mean and standard deviation of difference value between fundamental frequency with 1st overtone as well as mean variation of their frequency. It was revealed by simulation that the suggested feature vector has excellent discrimination in target signal identification from various interfering signals including frequency variation with time. By comparing Fisher scores, three features based on frequency show outstanding discrimination of measured UAV signals with low signal to noise ratio (SNR). Detection performance with simulated interference signal is compared by MFCC by using ELM classifier and the suggested feature vector shows 37.6% of performance improvement As the SNR increases with time, the proposed feature can detect the target signal ahead of MFCC that needs 4.5 dB higher signal power to detect the target.

Novel islanding detection method for grid connected PV system (계통연계형 태양광발전시스템의 새로운 단독운전 검출기법)

  • Jung, Young-Seok;So, Jung-Hun;Yu, Byung-Gyu;Yu, Gwon-Jong;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1705-1707
    • /
    • 2005
  • This paper proposes a novel active frequency drift(AFD) method for the islanding prevention of grid-connected photovoltaic inverter. To detect the islanding phenomenon of grid-connected photovoltaic(PV) inverters concerning about the safety hazards and the damage to other electric equipments, many kinds of anti-islanding methods have been presented. Among them, AFD method using chopping fraction(cf) enables the islanding detection to drift up(or down) the frequency of the voltage during the islanding situation. However, the performance of the conventional AFD methods, which have a certain value of cf only, is inefficient and difficult to design the appropriate cf value analytically to meet the limit of harmonics. In this paper, the periodic chopping fraction based on an AFD method is proposed. This proposed method shows the analytical design value of cf to meet the test procedure of IEEE Std. 929-2000 with the power quality and islanding detection time. To verify the validation of the proposed method, the islanding test results are presented. It is confirmed that the proposed method has not only less harmonic distortion but also good performance of islanding detection compare with the conventional AFD method.

  • PDF

Comparison of Three Active-Frequency-Drift Islanding Detection Methods for Single-Phase Grid-Connected Inverters

  • Kan, Jia-rong;Jiang, Hui;Tang, Yu;Wu, Dong-chun;Wu, Yun-ya;Wu, Jiang
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.509-518
    • /
    • 2019
  • A novel islanding detection method is proposed in this paper. It is based on a frequency drooping PLL, which was presented in a previous work. The cause of errors in the non-detection zone (NDZ) of conventional frequency disturbance islanding detection methods (IDM) is analyzed. A frequency drooping phase-locked-loop (FD-PLL) is introduced into a single-phase grid-connected inverter (SPGCI), which can guarantee that grid current is in phase with the grid voltage. A novel FD-PLL IDM is proposed by improving this PLL. In order to verify the performance of the proposed FD-PLL IDM, a full performance comparison between the proposed IDM and typical existing active frequency drift IDMs is carried out, which includes both dynamic performance and steady performance. With the same NDZ, the total harmonic distortion of the grid-current in the dynamic process and steady state is analyzed. The proposed FD-PLL IDM, regardless of the dynamic or steady process, has the best power quality. Experimental and simulation results verify that the proposed FD-PLL IDM has excellent performance.