• Title/Summary/Keyword: Harmonic detection

Search Result 186, Processing Time 0.018 seconds

Islanding Detection Method for Inverter-Based Distributed Generation through Injection of Second Order Harmonic Current

  • Lee, Yoon-Seok;Yang, Won-Mo;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1513-1522
    • /
    • 2018
  • This paper proposes a new islanding detection method for inverter-based distributed generators by continuously injecting a negligible amount of 2nd order harmonic current. The proposed method adopts a proportional resonant (PR) controller for the output current control of the inverter, and a PR filter to extract the 2nd order harmonic voltage at the point of common coupling (PCC). The islanding state can be detected by measuring the magnitude ratio of the 2nd order harmonic voltage to the fundamental voltage at the PCC by injecting a 2nd order harmonic current with a 0.8% magnitude. The proposed method provides accurate and fast detection under grid voltage unbalance and load unbalance. The operation of the proposed method has been verified through simulations and experiments with a 5kW hardware set-up, considering the islanding test circuit suggested in UL1741.

Performance Evaluation of the Harmonic Parameters for High Impedance Fault Detection in Distribution System (배전계통의 고 임피던스 고장 검출 고조파 변수 성능 평가)

  • Oh, Yong-Taek;Kim, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.883-885
    • /
    • 1997
  • High impedance fault(HIF) is random in its behavior even in a similar environment. The detection of Ire HIF has focused on the development of algorithms based on harmonic, parameters of the arc currents. However, a fact that proper selection of the harmonic parameters, rather than algorithm selection, is more important is shown in this paper by applying three different performance evaluation methods on two HIF detection algorithms using eight harmonic parameters.

  • PDF

A Study of the Current Reference Signal Generation Circuit for Single-Phase Harmonic Elimination Systems (단상 전원 고조파 제거 시스템을 위한 기준전류 생성회로에 대한 연구)

  • Jung Done-youl;Park Chong-yeon;Kim Sang-hun;Choi Won-ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.7
    • /
    • pp.335-342
    • /
    • 2005
  • This paper presents a circuit to generate the current reference signal for single-phase harmonic elemination systems. Some of conventional methods for the current reference signal generation based on neural network algorithms. It requires complex circuitry to implement. the simplest method is to use analog filters. but it is difficult to obtain good current reference signals. So, we propose the harmonic detection circuit using GIC(Generalized Impedance Converter) for the purpose of low cost ,simple circuitry and high performance, Simulation and experimental results verify that the proposed circuit has better harmonic detection performance than conventional circuit.

Harmonic Current Compensation Method Using Inverter-Interfaced Distributed Generators (인버터 연계형 분산전원을 이용한 배전계통 고조파 전류 보상원리)

  • Chung, Il-Yop;Kang, Hyun-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.279-284
    • /
    • 2011
  • Harmonic distortions in current waveform may cause significant problems in electric power system facility and operation. This paper presents an adaptive parameter estimation method to detect harmonic current components caused by nonlinear loads. In addition, a coordination strategy for multiple inverter-interfaced distributed generators to compensate the harmonic currents is discussed. The coordination strategy is realized by distributing the harmonic compensation participation index to individual distributed generators. The harmonic compensation participation index can be determined by the amount of remaining power generation capacity of each distributed generator. Simulation results based on switching-level inverter models show that the proposed harmonic detection method has good performance and the coordination strategy can improve harmonic problems efficiently.

Study on the Islanding Detection Technique of the Grid-Connected Photovoltaic System using Grid Voltage Harmonic Coefficients (계통전원 하모닉을 이용한 태양광 발전 시스템의 단독운전 검출기법에 관한 연구)

  • Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.417-424
    • /
    • 2010
  • This paper proposes a new islanding detection method for a grid-connected photovoltaic system. It is based on the fact that the equivalent harmonic components vary according to the grid connection status. The advantage of the proposed method is the reduced Non-Detection Zone and fast detection time. Also it can have the robust detection capability against grid disturbances. The theoretic analysis using grid-harmonic modeling is performed and verified by test result using 32-bit high performance DSP processor.

Fourier-Based PLL Applied for Selective Harmonic Estimation in Electric Power Systems

  • Santos, Claudio H.G.;Ferreira, Reginaldo V.;Silva, Sidelmo Magalhaes;Cardoso Filho, Braz J.
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.884-895
    • /
    • 2013
  • In this paper, the Fourier-based PLL (Phase-locked Loop) is introduced with a new structure, capable of selective harmonic detection in single and three-phase systems. The application of the FB-PLL to harmonic detection is discussed and a new model applicable to three-phase systems is introduced. An analysis of the convergence of the FB-PLL based on a linear model is presented. Simulation and experimental results are included for performance analysis and to support the theoretical development. The decomposition of an input signal in its harmonic components using the Fourier theory is based on previous knowledge of the signal fundamental frequency, which cannot be easily implemented with input signals with varying frequencies or subjected to phase-angle jumps. In this scenario, the main contribution of this paper is the association of a phase-locked loop system, with a harmonic decomposition and reconstruction method, based on the well-established Fourier theory, to allow for the tracking of the fundamental component and desired harmonics from distorted input signals with a varying frequency, amplitude and phase-angle. The application of the proposed technique in three-phase systems is supported by results obtained under unbalanced and voltage sag conditions.

Robust Feature Extraction for Voice Activity Detection in Nonstationary Noisy Environments (음성구간검출을 위한 비정상성 잡음에 강인한 특징 추출)

  • Hong, Jungpyo;Park, Sangjun;Jeong, Sangbae;Hahn, Minsoo
    • Phonetics and Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.11-16
    • /
    • 2013
  • This paper proposes robust feature extraction for accurate voice activity detection (VAD). VAD is one of the principal modules for speech signal processing such as speech codec, speech enhancement, and speech recognition. Noisy environments contain nonstationary noises causing the accuracy of the VAD to drastically decline because the fluctuation of features in the noise intervals results in increased false alarm rates. In this paper, in order to improve the VAD performance, harmonic-weighted energy is proposed. This feature extraction method focuses on voiced speech intervals and weighted harmonic-to-noise ratios to determine the amount of the harmonicity to frame energy. For performance evaluation, the receiver operating characteristic curves and equal error rate are measured.

Direct Harmonic Voltage Control Strategy of Shunt Active Power Filters Suitable for Microgrid Applications

  • Munir, Hafiz Mudassir;Zou, Jianxiao;Xie, Chuan;Li, Kay;Younas, Talha;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.265-277
    • /
    • 2019
  • The application of shunt active power filters (S-APFs) is considered to be the most popular approach for harmonic compensation due to its high simplicity, ease of installation and efficient control. Its functionality mainly depends upon the rapidness and precision of its internally built control algorithms. A S-APF is generally operated in the current controlled mode (CCM) with the detection of harmonic load current. Its operation may not be appropriate for the distributed power generation system (DPGS) due to the wide dispersion of nonlinear loads. Despite the fact that the voltage detection based resistive-APF (R-APF) appears to be more appropriate for use in the DPGS, the R-APF experiences poor performance in terms of mitigating harmonics and parameter tuning. Therefore, this paper introduces a direct harmonic voltage detection based control approach for the S-APF that does not need a remote harmonic load current since it only requires a local point of common coupling (PCC) voltage for the detection of harmonics. The complete design procedure of the proposed control approach is presented. In addition, experimental results are given in detail to validate the performance and superiority of the proposed method over the conventional R-APF control. Thus, the outcomes of this study approve the predominance of the discussed strategy.

Islanding Prevention Method for Photovoltaic System by Harmonic Injection Synchronized with Exciting Current Harmonics of Pole Transformer

  • Yoshida, Yoshiaki;Fujiwara, Koji;Ishihara, Yoshiyuki;Suzuki, Hirokazu
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.331-338
    • /
    • 2014
  • When large penetration of the distributed generators (DGs) such as photovoltaic (PV) systems is growing up in grid system, it is important to quickly prevent islanding caused by power system fault to ensure electrical safety. We propose a novel active method for islanding prevention by harmonic injection synchronized with the exciting current harmonics of the pole transformer to avoid mutual interference between active signals. We confirm the validity of the proposed method by performing the basic tests of islanding by using a current source superimposed the harmonic active signal. Further, we carry out the simulation using PSCAD/EMTDC, and verify the fast islanding detection.

An Advanced Three-Phase Active Power Filter with Adaptive Neural Network Based Harmonic Current Detection Scheme

  • Rukonuzzaman, M.;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • An advanced active power filter for the compensation of instantaneous harmonic current components in nonlinear current load is presented in this paper. A novel signal processing technique using an adaptive neural network algorithm is applied for the detection of harmonic components generated by three-phase nonlinear current loads and this method can efficiently determine the instantaneous harmonic components in real time. The control strategy of the switching signals to compensate current harmonics of the three-phase inverter is also discussed and its switching signals are generated with the space voltage vector modulation scheme. The validity of this active filtering processing system to compensate current harmonics is substantiated on the basis of simulation results.