• Title/Summary/Keyword: Harmonic current source

Search Result 284, Processing Time 0.021 seconds

A New Control Scheme of the Line-Interactive UPS Using the Series Active Compensator (직렬 능동 보상기를 이용한 Line-Interactive UPS의 새로운 제어 기법)

  • Jang, Hoon;Lee, Woo-Cheol;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.8
    • /
    • pp.405-412
    • /
    • 2003
  • This paper presents a three-phase Line-Interactive uninterruptible power supply (UPS) system with series-parallel active power-line conditioning capabilities, using synchronous reference frame (SRF) based controller, which allows an effective power factor correction, source harmonic voltage compensation, load harmonic current suppression, and output voltage regulation. The three-phase UPS system consists of two active power compensator topologies. One is a series active compensator, which works as a voltage source in phase with the source voltage to have the sinusoidal source current and high power factor under the deviation and distortion of the source voltage. The other is a parallel active compensator which works as a conventional sinusoidal voltage source in phase with the source voltage, providing to the load a regulated and sinusoidal voltage with low THD (total harmonic distortion). The control algorithm using SRF method and the active power flow through the Line-interactive UPS systems are described and studied. The simulation and experimental results are depicted in this paper to show the effect of the proposed algorithm.

A New Control Method of Series Active Power Filter with Harmonic Voltage Source (고조파 전압원에 대한 직렬형 능동전력필터의 새로운 제어법)

  • Ko, Soo-Hyun;Shin, Jae-Hwa;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1033-1036
    • /
    • 2002
  • This paper introduces a control method of series active power filter that compensate harmonic currents and eliminate a neutral line current in 3 phase 3 wire and 3 phase 4 wire power system with harmonic voltage source. These harmonic currents and neutral line current are caused by a nonlinear loads such as diode rectifiers and thyristor converters. Proposed methode extracts a voltage reference directly from performance function without phase transformation. Therefore, the control method is simpler than any other conventional methods. Experimental results for 3-phase 3-wire and 3-phase 4-wire series active power filter system were shown to verify the effectiveness of this control method.

  • PDF

Modelling and Performance Analysis of UPQC with Digital Kalman Control Algorithm under Unbalanced Distorted Source Voltage conditions

  • Kumar, Venkateshv;Ramachandran, Rajeswari
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1830-1843
    • /
    • 2018
  • In this paper, the generation of a reference current and voltage signal based on a Kalman filter is offered for a 3-phase 4wire UPQC (Unified Power Quality Conditioner). The performance of the UPQC is improved with source voltages that are distorted due to harmonic components. Despite harmonic and frequency variations, the Kalman filter is capable enough to determine the amplitude and the phase angle of load currents and source voltages. The calculation of the first state is sufficient to identify the fundamental components of the current, voltage and angle. Therefore, the Kalman state estimator is fast and simple. A Kalman based control strategy is proposed and implemented for a UPQC in a distribution system. The performance of the proposed control strategy is assessed for all possible source conditions with varying nonlinear and linear loads. The functioning of the proposed control algorithm with a UPQC is scrutinized and validated through simulations employing MATLAB/Simulink software. Using a FPGA SPATRAN 3A DSP board, the proposed algorithm is developed and implemented. A small-scale laboratory prototype is built to verify the simulation results. The stated control scheme for the UPQC reduces the following issues, voltage sags, voltage swells, harmonic distortions (voltage and current), unbalanced supply voltage and unbalanced power factor under dynamic and steady-state operating conditions.

Islanding Prevention Method for Photovoltaic System by Harmonic Injection Synchronized with Exciting Current Harmonics of Pole Transformer

  • Yoshida, Yoshiaki;Fujiwara, Koji;Ishihara, Yoshiyuki;Suzuki, Hirokazu
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.331-338
    • /
    • 2014
  • When large penetration of the distributed generators (DGs) such as photovoltaic (PV) systems is growing up in grid system, it is important to quickly prevent islanding caused by power system fault to ensure electrical safety. We propose a novel active method for islanding prevention by harmonic injection synchronized with the exciting current harmonics of the pole transformer to avoid mutual interference between active signals. We confirm the validity of the proposed method by performing the basic tests of islanding by using a current source superimposed the harmonic active signal. Further, we carry out the simulation using PSCAD/EMTDC, and verify the fast islanding detection.

A Study on the Problems of the Neutral Line Due to the 3rd Harmonic (중성선 공용시 3배수 고조파에 따른 문제점 분석)

  • Cho, Nam-Hun;Jung, Jum-Soo;Park, Yong-Woo;Ha, Bok-Nam;Lee, Heung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.10
    • /
    • pp.76-83
    • /
    • 2008
  • The neutral current is made of both the load unbalanced current and the 3rd harmonic. The 3rd harmonic which is the source of the main neutral current is generated from the loads using bridge rectifier circuits on their input produce currents. TV, computer and monitor which are belong to IEC 61000-3-2 Class D are the main 3rd harmonic current sources. In order to show the affect of the distribution system by these disturbances, this paper has studied the current standards of the Korea Electric and considers the problem of the neutral common.

3-Phase Hybrid Series Active Power Filter with Instantaneous Voltage Fluctuations Compensation (순간전압변동 보상 기능을 갖는 3상 하이브리드형 직렬 능동전력필터)

  • 한석우;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.544-551
    • /
    • 2000
  • In this paper, 3-phase hybrid series active power filter for compensate current harmonics, voltage drop and unbalanced voltage in the network presented. The proposed system is implemented with a space vector modulation voltage source inverter and a high pass filter connected in parallel to the power system. Here the load is six-pulses thyristor rectifier. The phase angle detected in order to generation reference voltage at load terminal is synchronized with the positive sequence component of the unbalanced source by using symmetrical component transformation. The proposed system has an function harmonic isolation between source and load, voltage regulation, and unbalance compensation. Therefore, what the power system is improved quality, the source current is maintained as a nearly sinusoidal waveform and the load voltage is regulated with a rated voltage regardless of the source variation condition. To verify the validity of the proposed compensating system, the computer simulation and experiment are carried out.

  • PDF

A study of Single-phase Voltage Source PWM Converter for High Power Factor (고역률 제어를 위한 단산 전압원 PWM 컨버터에 관한 연구)

  • 류성식;손진근;정을기;김형원;전희종
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.362-365
    • /
    • 1999
  • In this paper, the method of reducing harmonics and correcting of power factor in single PWM converter associated with diode rectifier and boos converter is studied. The ac-dc converter in which the harmonic distortion in the input current is reduced using a third harmonic injected PWM is proposed. A lower switching power loss and easy configuration o control circuit are obtained by adopting discontinuous current mode. Simulation and experimental results of ac-dc converter with 5[KHz] switching frequency are presented and correction of power factor and reduction of total harmonic distortion was established.

  • PDF

Sinusoidal Current Control of Single-Phase PWM Converters under Voltage Source Distortion Using Composite Observer (왜곡된 전원 전압하에서 Composite 관측기를 이용한단상 PWM 컨버터의 정현파 전류 제어)

  • Nguyen, Thanh Hai;Lee, Dong-Choon;Lee, Suk-Gyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.466-476
    • /
    • 2011
  • In this paper, a high-performance current control for the single-phase PWM converter under distorted source voltages is proposed using a composite observer. By applying the composite observer, the fundamental and high-order harmonic components of the source voltage and current are extracted without a delay. The extracted fundamental component is used for a phase-lock loop (PLL) system to detect the phase angle of the source voltage. A multi-PR (proportional-resonant) controller is employed to regulate the single-phase line current. The high-order harmonic components of the line current are easily eliminated, resulting in the sinusoidal line current. The simulation and experimental results have verified the validity of the proposed method.

Estimation of Harmonic Sources in a Power System using Recursive Least-Squares Technique (회귀 최소 자승법을 이용한 고조파 발생원 추정 연구)

  • Han, Jong-Hoon;Lee, Key-Byung;Park, Chang-Hyun;Jang, Gil-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1639-1645
    • /
    • 2011
  • A technique to allocate responsibilities among the interested parties in electric power system with harmonic voltage distortion at the point of common coupling (PCC) has been presented. The recursive least-squares technique has been used to estimate the parameters of the Thevenin equivalent load model. The validity of the technique has been verified using a simulation which considered the voltage waveform distortion at the PCC between the utility and two industrial consumers. With the estimated data from the measured voltage and current waveform at the PCC, the individual contributions to the distortion of voltage waveform at an interested harmonic frequency have been calculated and could provide a flexible solution to identify the source of harmonic pollution in distribution systems.

A Series Active Power Filter For Harmonic Currents And Reactive Power Compensation (고조파 전류와 무효전력보상을 위한 직렬형 능동전력필터)

  • 김진선;고수현;김영석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.5
    • /
    • pp.221-229
    • /
    • 2003
  • This paper suggests a control algorithm of 3-phase 3-wire series active power filter. This suggested algorithm can compensate source harmonics and reactive power in 3-phase 3-wire power distribution systems. These harmonics are generated by nonlinear loads such as diode rectifiers and thyristor converters. This control algorithm extracts a compensation voltage reference from performance function without phase transformation. Therefore, this control algorithm is simpler than any other conventional control algorithms. 3-phase 3-wire series active power filters which have a harmonic voltage source and a harmonic current source are manufactured and experiments are carried out to verify the effectiveness of suggested control algorithm.