• 제목/요약/키워드: Harmonic current compensation

검색결과 198건 처리시간 0.025초

왜곡된 전원 전압 하에서 삼상 PWM 컨버터의 전류 보상 기법 (Current Compensation Method of a Three Phase PWM Converter under Distorted Source Voltages)

  • 박내춘;목형수;지준근;김상훈
    • 전력전자학회논문지
    • /
    • 제13권5호
    • /
    • pp.352-359
    • /
    • 2008
  • 본 논문에서는 왜곡된 전원전압 하에서 삼상 PWM 컨버터의 전류 보상 기법을 제안하였다. PWM 컨버터의 제어에 있어서 전원단 전압의 정확한 위상각 정보는 필수적이다. 동기좌표계 PLL 기법을 이용하여 고조파 전압이 포함되어 있는 전원단의 위상각을 검출하는 경우 전원 전압의 고조파로 인해 왜곡된 위상각을 얻게 된다. 이러한 왜곡된 위상각으로 컨버터를 제어하는 경우 입력 전류는 순수 정현파가 되지 않고 고조파가 포함된다. 본 논문에서는 왜곡된 전원단 전압 조건에 대해서도 입력 전류의 고조파를 IEEE Std. 519 규정인 5% 이내로 제한할 수 있도록 하는 전류 보상기법을 제안하였다. 시뮬레이션과 실험을 통하여 제안된 기법의 타당성을 검증하였다.

A Three-Phase Four-Wire DSTATCOM for Power Quality Improvement

  • Singh, Bhim;Jayaprakash, P.;Kothari, D.P.
    • Journal of Power Electronics
    • /
    • 제8권3호
    • /
    • pp.259-267
    • /
    • 2008
  • Power quality improvement in a three-phase four-wire system is achieved using a new topology of DSTATCOM (distribution static compensator) consisting of a star/delta transformer with a tertiary winding and a three-leg VSC (voltage source converter). This new topology of DSTATCOM is proposed for power factor correction or voltage regulation along with harmonic elimination, load balancing and neutral current compensation. A tertiary winding is introduced in each phase for a delta connected secondary in addition to the star-star windings and this delta connected winding is responsible for neutral current compensation. The dynamic performance of the proposed DSTATCOM system is demonstrated using MATLAB with its Simulink and Power System Blockset (PSB) toolboxes under varying loads. The capacitor supported DC bus of the DSTATCOM is regulated to the reference voltage under varying loads.

보상 알고리즘을 적용한 변압기 보호용 전류차동 계전방식 (Current Differential Relaying Algorithm for Power Transformer Protection Operating in Conjunction with a CT Compensating Algorithm)

  • 강용철;박종민;이미선;장성일;김용균;소순홍
    • 전기학회논문지
    • /
    • 제56권11호
    • /
    • pp.1873-1878
    • /
    • 2007
  • Current differential relays may maloperate during magnetic inrush and over-excitation because a significant differential current is produced. To prevent maloperation, the relays adopt some harmonic components included in the differential current. The harmonic restraints may increase the security of a relay but cause the operating time delay of a relay when an internal fault occurs. Moreover, the operating time delay is more increased if a current transformer (CT) is saturated. This paper describes a current differential relaying algorithm for power transformer protection with a compensating algorithm for the secondary current of a CT. The comparative study was conducted with and without the compensating algorithm. The performance of the proposed algorithm was investigated when the measurement CT (C400) and the protection CT (C400) are used. The proposed algorithm can compensate the distorted current of a CT and thus reduce the operating time delay of the relay significantly for an internal fault with CT saturation.

Load Disturbance Compensation for Stand-alone Inverters Using an Inductor Current Observer

  • Choe, Jung-Muk;Moon, Seungryul;Byen, Byeng-Joo;Lai, Jih-Sheng;Lim, Young-Bae;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.389-397
    • /
    • 2017
  • A control scheme for stand-alone inverters that utilizes an inductor current observer (ICO) is proposed. The proposed method measures disturbance load currents using a current sensor and it estimates the inductor current using the ICO. The filter parameter mismatch effect is analyzed to confirm the ICO's controllability. The ICO and controllers are designed in a continuous-time domain and transferred to a discrete-time domain with a digital delay. Experimental results demonstrate the effectiveness of the ICO using a 5-kVA single-phase stand-alone inverter prototype. The experimental results demonstrate that the observed current matches the actual current and that the proposed method can archive a less than 2.4% total harmonic distortion (THD) sinusoidal output waveform under nonlinear load conditions.

비선형 부하를 고려한 배전용 정지형 보상기의 전류제어 기법 (Current Control Method of Distribution Static Compensator Considering Non-Linear Loads)

  • 김동근;최종우;김흥근
    • 전기학회논문지
    • /
    • 제58권7호
    • /
    • pp.1342-1348
    • /
    • 2009
  • DSTATCOM(distribution static compensator) is one of the custom power devices, and protects a distribution line from unbalanced and harmonic current caused by non-linear and unbalanced loads. Researches about DSTATCOM are mainly divided two parts, one is the calculation of compensated current and the other part is the current control. This paper proposes a proportional-resonant-repetitive current controller. Improved performance of instantaneous power compensation has been shown by simulations and experiments.

Comparison Analysis of Resonant Controllers for Current Regulation of Selective Active Power Filter with Mixed Current Reference

  • Yi, Hao;Zhuo, Fang;Li, Yu;Zhang, Yanjun;Zhan, Wenda
    • Journal of Power Electronics
    • /
    • 제13권5호
    • /
    • pp.861-876
    • /
    • 2013
  • Instead of extracting every selected harmonic component, the current reference of selective active power filter (APF) can be also obtained by filtering out the fundamental component from distorted load current for computation efficiency. This type of mixed current reference contains kinds of harmonic components and easily involves noises. In this condition, selective harmonic compensation must be realized by the current controller. With regard that selectivity is the most significant feature of controller, this paper presents specific comparison analysis between two types of resonant controllers: proportional-resonant (PR) controller and vector-resonant (VR) controller. The comparison analysis covers the relations, performances, and stability of both controllers. Analysis results conclude that the poorer selectivity of the PR controller could be relatively improved, but limitations from system stability make the improvement hardly realized. By contrast, the VR controller exhibits excellent selectivity and is more suitable for selective APF with mixed current reference. Experimental results from laboratory prototype validate the reasonability of analysis. And the features of each resonant controller are concluded.

Online Dead Time Effect Compensation Algorithm of PWM Inverter for Motor Drive Using PR Controller

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1137-1145
    • /
    • 2017
  • This paper proposes the dead time effect compensation algorithm using proportional resonant controller in pulse width modulation inverter of motor drive. To avoid a short circuit in the dc link, the dead time of the switch device is surely required. However, the dead time effect causes the phase current distortions, torque pulsations, and degradations of control performance. To solve these problems, the output current including ripple components on the synchronous reference frame and stationary reference frame are analyzed in detail. As a results, the distorted synchronous d-and q-axis currents contain the 6th, 12th, and the higher harmonic components due to the influence of dead time effect. In this paper, a new dead time effect compensation algorithm using proportional resonant controller is also proposed to reduce the output current harmonics due to the dead time and nonlinear characteristics of the switching devices. The proposed compensation algorithm does not require any additional hardware and the offline experimental measurements. The experimental results are presented to demonstrate the effectiveness of the proposed dead time effect compensation algorithm.

전압 고조파를 고려한 역률보상용 콘덴서의 특성 분석 (Characteristic Analysis of Power Compensation Condenser Considering Voltage Harmonics)

  • 김종겸;이동주
    • 전기학회논문지P
    • /
    • 제59권2호
    • /
    • pp.141-145
    • /
    • 2010
  • Most of the industrial loads includes the non-linear load as well as the linear load because there are many kinds of power conversion equipments at the input stage of the load in distribution network. The non-linear load causes the distortion of voltage waveform at PCC because the non-linear load generates the harmonic current. As a result, various voltage harmonics are existed at PCC depending on the current harmonics from the non-linear load. And, a series reactor is generally connected to the power capacitor in series to attenuate the distortion of voltage waveform and to reduce an inrush current of power capacitor. Also, harmonic current of power capacitor is highly dependent on the series reactor because it is operated with the power capacitor as a passive filter against nonlinear loads. Then, these capacitors might be damaged by the excessive voltage and current harmonic components. In this paper, we presented how to select the capacitor and series reactor to meet the requirement of the voltage distortion at PCC and analyzed the voltage, current and capacity rating of the power capacitor by the computer simulation to ensure the safe operation of power capacitor when the voltage harmonics at PCC are existed. Also, the analysis data were compared with the experimental measurements for the verification.

비선형부하에 의한 역률보상용 전력 커패시터의 고조파 문제 (Harmonic Problem in Power Capacitor for Power Factor Compensation due to the Nonlinear Loads)

  • 이동주;김종겸;이은웅;조연찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.840-841
    • /
    • 2008
  • Power capacitors are widely used to compensate the low power factor of the linear load and/or nonlinear load. Especially, nonlinear loads generates the harmonic current and it gives an undesirable effect on the power capacitors. In this paper, harmonic current from nonlinear load to the power capacitors is calculated by the computer simulation and it is compared with the experimental results.

  • PDF

A NEW INSTANTANEOUS VOLTAGE COMPENSATOR WITH FUNCTION OF ACTIVE POWER FILTERING

  • Lee, Seung-Yo;Lee, Jeong-Min;Lee, Sang-Yong;Mok, Hyung-Soo;Choe, Gyu-Ha
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.780-784
    • /
    • 1998
  • A novel active input unbalance voltage compensator with harmonic current compensating capability is proposed and the operating principle of the proposed system is presented in the 3-phase power system. The proposed system performs both the voltage regulation of the load and the compensation of the harmonic currents generated due to nonlinear load such as diode rectifier. The system to compensate unbalanced voltage and hramonic currents is composed of a 3-phase voltage source inverter, LC filter, series transformer and passive devices at the load side of the line. The compensating voltage to regulate the load voltage and to remove the harmonic current components is transmitted to the line by the series transformer. The validity of the line by the series transformer. The validity of the proposed system is proved by the results of computer simulation.

  • PDF