• Title/Summary/Keyword: Harmonic current compensation

Search Result 198, Processing Time 0.027 seconds

An Advanced Three-Phase Active Power Filter with Adaptive Neural Network Based Harmonic Current Detection Scheme

  • Rukonuzzaman, M.;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • An advanced active power filter for the compensation of instantaneous harmonic current components in nonlinear current load is presented in this paper. A novel signal processing technique using an adaptive neural network algorithm is applied for the detection of harmonic components generated by three-phase nonlinear current loads and this method can efficiently determine the instantaneous harmonic components in real time. The control strategy of the switching signals to compensate current harmonics of the three-phase inverter is also discussed and its switching signals are generated with the space voltage vector modulation scheme. The validity of this active filtering processing system to compensate current harmonics is substantiated on the basis of simulation results.

Analysis of Impedance Performance for Condenser by Harmonic Current Source (고조파 전류원에 의한 콘덴서 임피던스 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.57-64
    • /
    • 2011
  • Most of the user has been used linear load and non-linear load. The former is usually inductive load which is needed power factor compensation, the latter is power conversion system device. Actually two kinds of load is used together in the customer application. Generally capacitor is used for power-factor compensation of inductive load and reduction harmonics of non linear load with reactor. Non-linear load generates harmonic current for its energy conversion process. If harmonic current pass along the low impedance side of distribution system, the magnification of voltage and current is appeared by the series and parallel resonance. As a result, condenser has received a bitter electrical stress by the harmonic component. In this paper, we analyzed that how resonance is changed by the 5-th harmonic current pattern and proposed an alternative plan for non-magnification.

Model Predictive Control for Shunt Active Power Filter in Synchronous Reference Frame

  • Al-Othman, A.K.;AlSharidah, M.E.;Ahmed, Nabil A.;Alajmi, Bader. N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.405-415
    • /
    • 2016
  • This paper presents a model predictive control for shunt active power filters in synchronous reference frame using space vector pulse-width modulation (SVPWM). The three phase load currents are transformed into synchronous rotating reference frame in order to reduce the order of the control system. The proposed current controller calculates reference current command for harmonic current components in synchronous frame. The fundamental load current components are transformed into dc components revealing only the harmonics. The predictive current controller will add robustness and fast compensation to generate commands to the SVPWM which minimizes switching frequency while maintaining fast harmonic compensation. By using the model predictive control, the optimal switching state to be applied to the next sampling time is selected. The filter current contains only the harmonic components, which are the reference compensating currents. In this method the supply current will be equal to the fundamental component of load current and a part of the current at fundamental frequency for losses of the inverter. Mathematical analysis and the feasibility of the suggested approach are verified through simulation results under steady state and transient conditions for non-linear load. The effectiveness of the proposed controller is confirmed through experimental validation.

Torque Ripple Reduction Algorithm of PM Synchronous Motor at High Speed Operation (영구자석 동기 전동기의 고속운전 시 토크리플 저감 알고리즘)

  • Kim, Jong-Hyun;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.429-436
    • /
    • 2015
  • Torque ripples generate mechanical vibration at low speed and acoustic noise at high speed. The back emf harmonics of a PM synchronous motor is one of the main sources of torque ripples. To reduce torque ripples resulting from back emf harmonics, dq-axis harmonic currents that reduce the torque ripples are generally compensated to the current controller. Harmonic current compensation is effective at low speed, but it is not applicable at high speed because of the limited bandwidth of the current controller. In this study, dq-axis harmonic voltage compensation that can reduce torque ripples at high speed is proposed. The dq-axis harmonic voltages are calculated from the motor speed and the dq-axis harmonic currents. The effectiveness of the proposed method in reducing torque ripple is verified by a simulation and experiments.

A Study on Control and Compensating Characteristics of Active Series Voltage Compensator with Harmonic Current Compensating Capability (고조파전류 보상 기능을 갖는 능동 직렬 전압보상기의 제어 및 보상특성에 관한 연구)

  • 이승요;김홍성;최규하;신우석;김홍근
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.484-492
    • /
    • 2000
  • In this paper, a voltage compensator with harmonic current compensating capability is studied and its compensating characteristics are analyzed. Like the hybrid active power filter, the proposed system is composed of parallel LC passive filter and series PWM converter connected to power line through series transformer. It is shown that the compensation of harmonic current generated due to nonlinear loads such as diode rectifier and instantaneous voltage compensation of the source are performed through the proposed compensating system. The operating principle of the proposed system is described through a single-phase equivalent circuit and the control strategy is suggested on the d-q rotating reference frame of the 3-phase system. Also, experiment is carried out to verify compensating characteristics of the proposed system.

  • PDF

Design of DC Side Voltage and Compensation Analysis of THD for Shunt Power Quality Controller under System Load of Rectifier with R-L Load

  • Zhao, Guopeng;Han, Minxiao
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.30-40
    • /
    • 2015
  • For a shunt power quality controller (SPQC) the DC side voltage value which is closely related to the compensation performance is a significant parameter. Buy so far, very little discussion has been conducted on this in a quantitative manner by previous publications. In this paper, a method to design the DC side voltage of SPQC is presented according to the compensation performance in the single-phase system and the three-phase system respectively. First, for the reactive current and the harmonic current compensation, a required minimal value of the DC side voltage with a zero total harmonic distortion (THD) of the source current and a unit power factor is obtained for a typical load, through the equivalent circuit analysis and the Fourier Transform analytical expressions. Second, when the DC side voltage of SPQC is lower than the above-obtained minimal value, the quantitative relationship between the DC side voltage and the THD after compensation is also elaborated using the curve diagram. Hardware experimental results verify the design method.

A Novel Harmonic Compensation Method for the Single Phase Grid Connected Inverters (단상 계통연계 인버터를 위한 새로운 고조파 보상법)

  • Khan, Reyyan Ahmad;Ashraf, Muhammad Noman;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.144-146
    • /
    • 2018
  • In order to meet the harmonics standards such as IEEE 519 and P1547 the output quality of a grid connected inverter should satisfy a certain level of Total Harmonic Distortion (THD) value. However, the output quality of an inverter gets degraded due to the grid voltage harmonics, the dead time effects and the nonlinearity of the switches, which all contributes to a higher THD value of the output. In order to meet the required THD value for the inverter output under the distorted grid condition the use of harmonic controller is essential. In this paper a novel feedforward harmonic compensation method is proposed in order to effectively eliminate the low order harmonics in the inverter current to the grid. In the proposed method, unlike the conventional harmonic control methods, the hamonic components are directly compensated by the feedforward terms generated by the PR controller with the grid current in the stationary frame. The proposed method is simple in implementation but powerful in eliminating the harmonics from the output. The effectiveness of proposed method is verified through the PSIM simulation and the experiments with a 5kW single phase grid connected inverter.

  • PDF

An Improved Harmonic Compensation Method for a Single-Phase Grid Connected Inverter (단상 계통연계 인버터를 위한 개선된 고조파 보상법)

  • Khan, Reyyan Ahmad;Choi, Woojin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.215-227
    • /
    • 2019
  • Grid-connected inverters should satisfy a certain level of total harmonic distortion (THD) to meet harmonics standards, such as IEEE 519 and P1547. The output quality of an inverter is typically degraded due to grid voltage harmonics, dead time effects, and the device's turn-on/turn-off delay, which all contribute to increasing the THD value of the output. The use of a harmonic controller is essential to meet the required THD value for inverter output under a distorted grid condition. In this study, an improved feedforward harmonic compensation method is proposed to effectively eliminate low-order harmonics in the inverter current to the grid. In the proposed method, harmonic components are directly compensated through feedforward terms generated by the proportional resonant controller with the grid current in a stationary frame. The proposed method is simple to implement but powerful in eliminating harmonics from the output. The effectiveness of the proposed method is verified through simulation using PSIM software and experiments with a 5 kW single-phase grid-connected inverter.

Hybrid-Type Active Power Filters for Compensating Harmonic Current and Unbalanced Source Voltages (고조파 전류와 불평형 전원전압 보상을 위한 복합형 능동전력 필터)

  • Lee, Ji-Myeong;Lee, Dong-Chun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.5
    • /
    • pp.249-257
    • /
    • 2002
  • In this paper, a novel control scheme compensating source voltage unbalance and harmonic currents for the combined system of series active and shunt passive power filter is proposed, where no low/high-pass filters are used in deriving the reference voltage for compensation. The phase angle and the reference voltages compensating for harmonic current and unbalanced voltage are derived from the positive sequence component of the unbalanced voltage set, which is simply obtained by using digital all-pass filters. In order to remove the phase delay in generating the reference voltage for compensation, the reference of 5th and 7th harmonic components is predicted one-sampling ahead. The validity of the proposed scheme has been verified for 3[kVA] proto-type active power filter system.

Harmonic Current Compensation based on Three-phase Three-level Shunt Active Filter using Fuzzy Logic Current Controller

  • Salim, Chennai;Benchouia, M.T.;Golea, A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.595-604
    • /
    • 2011
  • A three-phase three-level shunt active filter controlled by fuzzy logic current controller which can compensate current harmonics generated by nonlinear loads is presented. Three-level inverters and fuzzy controllers have been successfully employed in several power electronic applications these past years. To improve the conventional pwm controller performance, a new control scheme based on fuzzy current controller is adopted for three-level (NPC) shunt active filter. The scheme is designed to improve compensation capability of APF by adjusting the current error using a fuzzy rule. The inverter current reference signals required to compensate harmonic currents use the synchronous reference detection method. This technique is easy to implement and achieves good results. To maintain the dc voltage across capacitor constant and reduce inverter losses, a proportional integral voltage controller is used. The simulation of global system control and power circuits is performed using Matlab-Simulink and SimPowerSystem toolbox. The results obtained in transient and steady states under various operating conditions show the effectiveness of the proposed shunt active filter based on fuzzy current controller compared to the conventional scheme.