• 제목/요약/키워드: Harmonic current

검색결과 1,337건 처리시간 0.036초

진공청소기용 유니버셜모터의 고조파전류 저감 위상각제어기 설계 (The Design of Phase Angle Controller Reducing Sub-harmonic Current for Universal Motor in Vacuum Cleaner)

  • 임홍우;장용해;백형래
    • 전력전자학회논문지
    • /
    • 제7권3호
    • /
    • pp.237-243
    • /
    • 2002
  • 단상 위상각제어시스템의 경우 제어기의 구조상의 단순함과 저가격화로 인해 많은 노이즈가 발생함에도 불구하고 트라이액 교류 위상각제어기를 속도제어기로 사용하고 있다. 시판되는 진공청소기의 경우 트라이액의 위상각을 조절하여 속도를 제어하고 있는데 고조파전류의 발생을 최소화로 하기 위해서 속도의 선형성을 고려하지는 않고 제작하고 있는 경우가 대부분이다. 본 논문에서는 진공청소기용 위상각 제어기에 파라미터 추정에 의한 실제작 시스템으로 고조파가 많이 발생되는 특정 트라이액 트리거 위상각에서도 고조파전류가 효과적으로 감소되고 부수적으로 지연각이 없어지는 고조파전류 감쇠용 위상제어기의 설계 및 제작하여 실험을 통해 입증하였다.

중성선 공용시 3배수 고조파에 따른 문제점 분석 (A Study on the Problems of the Neutral Line Due to the 3rd Harmonic)

  • 조남훈;정점수;박용우;하복남;이흥호
    • 조명전기설비학회논문지
    • /
    • 제22권10호
    • /
    • pp.76-83
    • /
    • 2008
  • 중성선 전류는 부하 불평형 전류와 3배수 고조파 전류로 이루어져 있다. 중성선 전류의 주요한 원인이 되는 3배수 고조파 전류는 단상 비선형 부하가 사용하는 단상 정류회로에 기인하며, IEC 61000-3-2의 클래스 D에 속하는 TV, 컴퓨터, 모니터가 부하전류 대 3배수 고조파 전류를 가장 많이 발생시킨다. 배전계통에 미치는 고조파 영향의 예를 보이기 위해 고조파를 고려하지 않은 중성선 공용 문제에 대해 현행 배전설비 설계기준을 살펴보고 대책을 살펴본다.

고조파 전류를 이용한 영구자석형 동기 전동기의 토크 리플 저감 (Torque Ripple Reduction for Permanent Magnet Synchronous Motor using Harmonic Current Injection)

  • 권순오;이정종;이근호;홍정표
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.1930-1935
    • /
    • 2009
  • This paper deals with the torque ripple reduction of permanent magnet synchronous motor using harmonic current injection. Torque ripple of electric motor reduces system stability and performances, therefore efforts to reduce torque ripple are exerted in the design process. Torque ripple can be reduced by appropriate pole/slot combination, skew of rotor or stator, design of magnetic circuit, etc. In addition, torque ripple can be also reduced by input voltage and current, and many researches have been conducted to reduce torque ripple for six-step drive. Torque ripple reduction for current vector controlled permanent magnet synchronous motor also have been conducted and verified by investigating back emf wave form. Torque ripple reduction in this paper started from getting torque profile according to input current and electrical angle calculated by FEA, then instantaneous currents at each electrical angles for constant torque are calculated and applied to experiments. Therefore, 0% of torque ripple can be obtained theoretically with harmonic current injection. In order to maximize the effect of torque ripple reduction, a BLDC motor having high harmonic component of back emf is chosen. With sinusoidal current drive, over 100% of torque ripple is obtained initially, then 0.5 % of torque ripple is obtained by FEA using harmonic current injection. The effect is verified by experiment and the presented method can be effectively applicable to Electric Power Steering(EPS).

A Harmonic Circulation Current Reduction Method for Parallel Operation of UPS with a Three-Phase PWM Inverter

  • Kim Kyung-Hwan;Kim Wook-Dong;Hyun Dong-Suk
    • Journal of Power Electronics
    • /
    • 제5권2호
    • /
    • pp.160-165
    • /
    • 2005
  • In a parallel operation of UPS, there are two types of circulating currents between UPS. One is the low order circulating current with a fundamental frequency caused by the amplitude and phase differences of UPS output voltages, and the other is the harmonic circulating current with PWM switching frequency caused by non-synchronized PWM waveforms among UPS. The elimination of the low order circulating current is essential for optimal load sharing in parallel operations of UPS, which can be accomplished by the phase and magnitude control at each UPS. The harmonic circulating current may cause troubles and deteriorate in performance of the controller for optimal load sharing in parallel operation of UPS. This paper presents a PWM synchronizing method to eliminate the harmonic circulation current in parallel operation of UPS. The effectiveness of the proposed scheme has been investigated and verified through experiments by a 50kVA UPS.

전압 및 전류 고조파에 의한 커패시터 동작 특성 (A Study on the Characteristic of Capacitor by Voltage and Current Harmonics)

  • 김종겸;박영진;이동주;이은웅
    • 전기학회논문지P
    • /
    • 제58권3호
    • /
    • pp.257-262
    • /
    • 2009
  • Capacitor is basically used for the power-factor compensation and sometimes as the passive filter to reduce harmonics of nonlinear load. Since the impedance of capacitor is inversely proportional to the frequency. The harmonic current may result in the problems of voltage distortion and resonance. Capacitor has easily fall under by two harmonic components, a nonlinear load and a distorted utility voltage. The amplified harmonic current and voltage may damage power capacitor. Hence the pre-investigation of harmonic is needed before designing and application the power factor for reducing fault rate. In this paper, we analyzed that voltage and current with harmonics components act on the capacitor under the resonance condition. we concluded that both voltage and current harmonics have an bad effect on the capacitor and current harmonics is a bitter rather than effect by voltage harmonics.

DH Laser Diode의 Threshold Current에 대한 2차 고조파 왜곡의 이론적 해석 (Theoretical Analysis of Second Harmonic Distortion for Threshold Current in DH Laser Diode)

  • 김성일;박한규
    • 대한전자공학회논문지
    • /
    • 제17권2호
    • /
    • pp.10-14
    • /
    • 1980
  • 본 논문에서는 DH-laser diode의 threshold current를 계산하기 위하여 2차고조파 왜곡 (se cond harmonic distortion)에 대해 Rate 방정식 (Rate-equation)을 동적상태와 정적상태 방정식으로 연릴하여 계산하였다. 특히 고조파 왜곡 ( )을 계산하는데 바이어스 전류 에 대하여 변조 전류 을 변조계수 m으로 놓고 (Jm=mJo)계산하여 주입전류 J가 Jth에서 2차 고조파 왜곡이 최대치를 가짐을 보여 ,이제까지 알려진 Jth조사 방법보다 간편하고 정확하게 조사할 수 있음을 제시하였다.

  • PDF

누설전류측정에 의한 피뢰기 열화진단에 있어 전원고조파의 영향 (Influence of Harmonics in Power System Voltage on Arrester Deterioration Diagnostics by Leakage Current Measurement)

  • 길경석;한주섭;주문노
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권1호
    • /
    • pp.42-46
    • /
    • 2003
  • Arresters are deteriorated by overvoltages or impulse currents, and the resistive leakage current of arresters increases as the deterioration of the arrester progresses, showing an increase in the 3$^{rd}$ harmonic component of the leakage current. In this reason, arrester diagnostic techniques based on the 3$^{rd}$ harmonic leakage current as a reference parameter of deterioration are widely used. The technique, however, includes an error due to the harmonics of power system voltage. Therefore, the influence of the harmonics on arrester diagnostics should be considered. In this paper, we designed a PSpice ZnO arrester model to simulate the influence of the voltage harmonics described above. A pure sinusoidal voltage and its the 3r harmonic voltage were applied to the model, and the leakage current components were analyzed. From the simulation results, it is confirmed that the peak value of resistive leakage current depends not only on the phase of the 3$^{rd}$ harmonic voltage but also on the magnitude of it. Consequently, the errors caused 1)y the harmonic voltage could be minimized by correcting the magnitude of leakage current upon analyzing the harmonics.cs.

Islanding Prevention Method for Photovoltaic System by Harmonic Injection Synchronized with Exciting Current Harmonics of Pole Transformer

  • Yoshida, Yoshiaki;Fujiwara, Koji;Ishihara, Yoshiyuki;Suzuki, Hirokazu
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권3호
    • /
    • pp.331-338
    • /
    • 2014
  • When large penetration of the distributed generators (DGs) such as photovoltaic (PV) systems is growing up in grid system, it is important to quickly prevent islanding caused by power system fault to ensure electrical safety. We propose a novel active method for islanding prevention by harmonic injection synchronized with the exciting current harmonics of the pole transformer to avoid mutual interference between active signals. We confirm the validity of the proposed method by performing the basic tests of islanding by using a current source superimposed the harmonic active signal. Further, we carry out the simulation using PSCAD/EMTDC, and verify the fast islanding detection.

직렬형 능동필터와 수동형 병렬필터를 이용한 전원불평형 및 고조파 전류 보상 (Series-Active and Shunt-Pasive Type Power Filter Compensating Harmonic Currents and Unbalanced Voltages of Source)

  • 이지명;이동춘
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.565-568
    • /
    • 2001
  • A novel control scheme compensating for source voltage unbalance and harmonic current for series active power filters is proposed, where the references for voltage unbalance and current harmonic and phase angle is derived from the positive sequence component of the source voltage obtained simply through digital all-pass filters, which makes the whole control algorithm simpler than other methods using p-q theory. In addition, the harmonic component of source current is compensated by harmonic component of load voltage and therefore fundamental component of source current is considered as separated terms for the control issue. The validity of the proposed scheme has been verified by experimental results.

  • PDF

Harmonic Current Compensation Using Active Power Filter Based on Model Predictive Control Technology

  • Adam, Misbawu;Chen, Yuepeng;Deng, Xiangtian
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1889-1900
    • /
    • 2018
  • Harmonic current mitigation is vital in power distribution networks owing to the inflow of nonlinear loads, distributed generation, and renewable energy sources. The active power filter (APF) is the current electrical equipment that can dynamically compensate for harmonic distortion and eliminate asymmetrical loads. The compensation performance of an APF largely depends on the control strategy applied to the voltage source inverter (VSI). Model predictive control (MPC) has been demonstrated to be one of the effective control approaches to providing fast dynamic responses. This approach covers different types of power converters due to its several advantages, such as flexible control scheme and simple inclusion of nonlinearities and constraints within the controller design. In this study, a finite control set-MPC technique is proposed for the control of VSIs. Unlike conventional control methods, the proposed technique uses a discrete time model of the shunt APF to predict the future behavior of harmonic currents and determine the cost function so as to optimize current errors through the selection of appropriate switching states. The viability of this strategy in terms of harmonic mitigation is verified in MATLAB/Simulink. Experimental results show that MPC performs well in terms of reduced total harmonic distortion and is effective in APFs.