• Title/Summary/Keyword: Harmonic Tuning

Search Result 84, Processing Time 0.021 seconds

An MMIC VCO Design and Fabrication for PCS Applications

  • Kim, Young-Gi;Park, Jin-Ho
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.202-207
    • /
    • 1997
  • Design and fabrication issues for an L-band GaAs Monolithic Microwave Integrated Circuit(MMIC) Voltage Controlled Oscillator(VCO) as a component of Personal Communications Systems(PCS) Radio Frequency(RF) transceiver are discussed. An ion-implanted GaAs MESFET tailored toward low current and low noise with 0.5mm gate length and 300mm gate width has been used as an active device, while an FET with the drain shorted to the source has been used as the voltage variable capacitor. The principal design was based on a self-biased FET with capacitive feedback. A tuning range of 140MHz and 58MHz has been obtained by 3V change for a 600mm and a 300mm devices, respectively. The oscillator output power was 6.5dBm wth 14mA DC current supply at 3.6V. The phase noise without any buffer or PLL was 93dB/1Hz at 100KHz offset. Harmonic balance analysis was used for the non-linear simulation after a linear simulation. All layout induced parasitics were incorporated into the simulation with EEFET2 non-linear FET model. The fabricated circuits were measured using a coplanar-type probe for bare chips and test jigs with ceramic packages.

  • PDF

One-Cycle Control Strategy for Dual-Converter Three-Phase PWM Rectifier under Unbalanced Grid Voltage Conditions

  • Xu, You;Zhang, Qingjie;Deng, Kai
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.268-277
    • /
    • 2015
  • In this paper, a dual-converter three-phase pulse width modulation (PWM) rectifier based on unbalanced one-cycle control (OCC) strategy is proposed. The proposed rectifier is used to eliminate the second harmonic waves of DC voltage and distortion of line currents under unbalanced input grid voltage conditions. The dual-converter PWM rectifier employs two converters, which are called positive-sequence converter and negative-sequence converter. The unbalanced OCC system compensates feedback currents of positive-sequence converter via grid negative-sequence voltages, as well as compensates feedback currents of negative-sequence converter via grid positive-sequence voltages. The AC currents of positive- and negative-sequence converter are controlled to be symmetrical. Thus, the workload of every switching device of converter is balanced. Only one conventional PI controller is adopted to achieve invariant power control. Then, the parameter tuning is simplified, and the extraction for positive- and negative-sequence currents is not needed anymore. The effectiveness and the viability of the control strategy are demonstrated through detailed experimental verification.

Investigation on Seismic-Response Characteristics and Optimal Design Parameters of Tuned Mass Damper Considering Site Effects (지반특성에 따른 동조질량감쇠기의 지진응답특성 및 최적설계변수)

  • Kang, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5306-5313
    • /
    • 2011
  • Most previous studies for finding optimal design parameters of a tuned mass damper(TMD) have been focused on the harmonic excited single-degree-of freedom system. In this study, optimal values of damping ratio and tuning frequency ratio of a TMD applied to control a seismically excited structure are investigated through numerical analyses. Considering that the structural responses due to earthquake loads are strongly dependent on the soil condition, the site effects on the optimal parameters of the TMD are studied and compared to those presented by previous studies. Numerical analyses results indicate that better control performance can be obtained by using the parameters proposed by this study in the seismic application of the TMD.

Design and Fabrication of on Oscillator with Low Phase Noise Characteristic using a Phase Locked Loop (위상고정루프를 이용한 낮은 위상 잡음 특성을 갖는 발진기 설계 및 제작)

  • Park, Chang-Hyun;Kim, Jang-Gu;Choi, Byung-Ha
    • Journal of Navigation and Port Research
    • /
    • v.30 no.10 s.116
    • /
    • pp.847-853
    • /
    • 2006
  • In this paper, we designed VCO(voltage controlled oscillator} that is composed of a dielectric resonator and a varactor diode, and the PLDRO(phase locked dielectric resonator oscillator) that is combined with the sampling phase detector and loop filter. The results at 12.05 GHz show the output power is 13.54 dBm frequency tuning range approximately +/- 7.5 MHz, and power variation over the tuning range less than 0.2 dB, respectively. The phase noise which effects on bits error rate in digital communication is obtained with -114.5 dBc/Hz at 100 kHz offset from carrier, and The second harmonic suppression is less than -41.49 dBc. These measured results are found to be more improved than those of VCO without adopting PLL, and the phase noise and power variation performance characteristics show the better performances than those of conventional PLL.

A Study on the Design and Fabrication of Phase Locked Dielectric Resonance Oscillator (위상고정 유전체 공진형 발진기의 설계 및 제작에 관한 연구)

  • Seo Gon;Park hang-Hyun;Kim Jang-Gu;Choi Byung-Ha
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.3 s.333
    • /
    • pp.25-32
    • /
    • 2005
  • In this papers, we first, therefore, designed VCO(voltage controlled oscillator) that is composed of the dielectric resonator and the varactor diode, and then designed and fabricated PLDRO(phase locked dielectric resonator oscillator) that is combined with the sampling phase detector and loop filter. The measured results of the fabricated PLDRO at 12.05 [GHz] show the output power is 13.54 [dBm], frequency tuning range approximately +/- 7.5 [MHz], and Power variation over the tuning range less than 0.2 [dB], respectively. The phase noise which effects on bits error rate in digital communication is obtained with -114.5 [dBc/Hz] at 100 [KHz] offset from carrier, and The second harmonic suppression is less than -41.49 [dBc]. These measured results are found to be more improved than those of VCO without adopting PLL, and the phase noise and power variation performance characteristics show the better performances than those of conventional PLL.

A Miniaturized 2.5 GHz 8 W GaN HEMT Power Amplifier Module Using Selectively Anodized Aluminum Oxide Substrate (선택적 산화 알루미늄 기판을 이용한 소형 2.5 GHz 8 W GaN HEMT 전력 증폭기 모듈)

  • Jeong, Hae-Chang;Oh, Hyun-Seok;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.12
    • /
    • pp.1069-1077
    • /
    • 2011
  • In this paper, a design and fabrication of a miniaturized 2.5 GHz 8 W power amplifier using selectively anodized aluminum oxide(SAAO) substrate are presented. The process of SAAO substrate is recently proposed and patented by Wavenics Inc. which uses aluminum as wafer. The selected active device is a commercially available GaN HEMT chip of TriQuint company, which is recently released. The optimum impedances for power amplifier design were extracted using the custom tuning jig composed of tunable passive components. The class-F power amplifier are designed based on EM co-simulation of impedance matching circuit. The matching circuit is realized in SAAO substrate. For integration and matching in the small package module, spiral inductors and single layer capacitors are used. The fabricated power amplifier with $4.4{\times}4.4\;mm^2$ shows the efficiency above 40 % and harmonic suppression above 30 dBc for the second(2nd) and the third(3rd) harmonic at the output power of 8 W.

Dual-Band High-Efficiency Class-F Power Amplifier using Composite Right/Left-Handed Transmission Line (Composite Right/Left-Handed 전송 선로를 이용한 이중 대역 고효율 class-F 전력증폭기)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.53-59
    • /
    • 2008
  • In this paper, a novel dual-band high-efficiency class-F power amplifier using the composite right/left-handed (CRLH) transmission lines (TLs) has been realized with one RF Si lateral diffusion metal-oxide-semiconductor field effect transistor (LDMOSFET). The CRLH TL can lead to metamaterial transmission line with the dual-band tuning capability. The dual-band operation of the CRLH TL is achieved by the frequency offset and the nonlinear phase slope of the CRLH TL for the matching network of the power amplifier. Because the control of the all harmonic components is very difficult in dual-band, we have managed only the second- and third-harmonics to obtain the high efficiency with the CRLH TL in dual-band. Also, the proposed power amplifier has been realized by using the harmonic control circuit for not only the output matching network, but also the input matching network for better efficiency. Two operating frequencies are chosen at 880 MHz and 1920 MHz in this work. The measured results show that the output power of 39.83 dBm and 35.17 dBm was obtained at 880 MHz and 1920 MHz, respectively. At this point, we have obtained the power-added efficiency (PAE) of 79.536 % and 44.04 % at two operation frequencies, respectively.

Mutual comparison of Two Frequency Modulation System (두가지 주파소변조방식의 상호비교)

  • 정만영;김영웅
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.11 no.6
    • /
    • pp.44-49
    • /
    • 1974
  • reactance modulator composed of multi-stage phase modulator utilizing VVC diodes as variable reactance elements and an oscillartor-modulator, utilizing a VVC diode as a tuning element, coupled to a crystal resonator through an artificial λ/4 network are introduced and their characteristics as FM modulator are compared mutually from the practical view points. especially, to get high modulation sensitivity of reactance modulators using VVC diodes, making a multi-stage modulation distortion characteristics of multi-stage modulator was necessary. The harmonic moj\dulationdistorion characteristics of multi-stage reactance modulator is analized in detall. Multi-stage reachance modulator is preferable to maintain sufficiently stable carrier frequency over the wide range of temperature and a mobile-transceiver was made through this method. On the other hand, FM-Quartz oscillator using a VVc diode is suitavle for handy-talkies of good quality were made through this method.

  • PDF

A Novel Fast Open-loop Phase Locking Scheme Based on Synchronous Reference Frame for Three-phase Non-ideal Power Grids

  • Xiong, Liansong;Zhuo, Fang;Wang, Feng;Liu, Xiaokang;Zhu, Minghua;Yi, Hao
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1513-1525
    • /
    • 2016
  • Rapid and accurate phase synchronization is critical for the reliable control of grid-tied inverters. However, the commonly used software phase-locked loop methods do not always satisfy the need for high-speed and accurate phase synchronization under severe grid imbalance conditions. To address this problem, this study develops a novel open-loop phase locking scheme based on a synchronous reference frame. The proposed scheme is characterized by remarkable response speed, high accuracy, and easy implementation. It comprises three functional cascaded blocks: fast orthogonal signal generation block, fast fundamental-frequency positive sequence component construction block, and fast phase calculation block. The developed virtual orthogonal signal generation method in the first block, which is characterized by noise immunity and high accuracy, can effectively avoid approximation errors and noise amplification in a wide range of sampling frequencies. In the second block, which is the foundation for achieving fast phase synchronization within 3 ms, the fundamental-frequency positive sequence components of unsymmetrical grid voltages can be achieved with the developed orthogonal signal construction strategy and the symmetrical component method. The real-time grid phase can be consequently obtained in the third block, which is free from self-tuning closed-loop control and thus improves the dynamic performance of the proposed scheme. The proposed scheme is adaptive to severe unsymmetrical grid voltages with sudden changes in magnitude, phase, and/or frequency. Moreover, this scheme is able to eliminate phase errors induced by harmonics and random noise. The validity and utility of the proposed scheme are verified by the experimental results.

The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting

  • Marian, Laurentiu;Giaralis, Agathoklis
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.665-678
    • /
    • 2017
  • In this paper the tuned mass-damper-inerter (TMDI) is considered for passive vibration control and energy harvesting in harmonically excited structures. The TMDI couples the classical tuned mass-damper (TMD) with a grounded inerter: a two-terminal linear device resisting the relative acceleration of its terminals by a constant of proportionality termed inertance. In this manner, the TMD is endowed with additional inertia, beyond the one offered by the attached mass, without any substantial increase to the overall weight. Closed-form analytical expressions for optimal TMDI parameters, stiffness and damping, given attached mass and inertance are derived by application of Den Hartog's tuning approach to suppress the response amplitude of force and base-acceleration excited single-degree-of-freedom structures. It is analytically shown that the TMDI is more effective from a same mass/weight TMD to suppress vibrations close to the natural frequency of the uncontrolled structure, while it is more robust to detuning effects. Moreover, it is shown that the mass amplification effect of the inerter achieves significant weight reduction for a target/predefined level of vibration suppression in a performance-based oriented design approach compared to the classical TMD. Lastly, the potential of using the TMDI for energy harvesting is explored by substituting the dissipative damper with an electromagnetic motor and assuming that the inertance can vary through the use of a flywheel-based inerter device. It is analytically shown that by reducing the inertance, treated as a mass/inertia-related design parameter not considered in conventional TMD-based energy harvesters, the available power for electric generation increases for fixed attached mass/weight, electromechanical damping, and stiffness properties.