• Title/Summary/Keyword: Harmful air

Search Result 418, Processing Time 0.03 seconds

Quantitative Exposure Assessment of Various Chemical Substances in a Wafer Fabrication Industry Facility

  • Park, Hyun-Hee;Jang, Jae-Kil;Shin, Jung-Ah
    • Safety and Health at Work
    • /
    • v.2 no.1
    • /
    • pp.39-51
    • /
    • 2011
  • Objectives: This study was designed to evaluate exposure levels of various chemicals used in wafer fabrication product lines in the semiconductor industry where work-related leukemia has occurred. Methods: The research focused on 9 representative wafer fabrication bays among a total of 25 bays in a semiconductor product line. We monitored the chemical substances categorized as human carcinogens with respect to leukemia as well as harmful chemicals used in the bays and substances with hematologic and reproductive toxicities to evaluate the overall health effect for semiconductor industry workers. With respect to monitoring, active and passive sampling techniques were introduced. Eight-hour long-term and 15-minute short-term sampling was conducted for the area as well as on personal samples. Results: The results of the measurements for each substance showed that benzene, toluene, xylene, n-butyl acetate, 2-methoxy-ethanol, 2-heptanone, ethylene glycol, sulfuric acid, and phosphoric acid were non-detectable (ND) in all samples. Arsine was either "ND" or it existed only in trace form in the bay air. The maximum exposure concentration of fluorides was approximately 0.17% of the Korea occupational exposure limits, with hydrofluoric acid at about 0.2%, hydrochloric acid 0.06%, nitric acid 0.05%, isopropyl alcohol 0.4%, and phosphine at about 2%. The maximum exposure concentration of propylene glycol monomethyl ether acetate (PGMEA) was 0.0870 ppm, representing only 0.1% or less than the American Industrial Hygiene Association recommended standard (100 ppm). Conclusion: Benzene, a known human carcinogen for leukemia, and arsine, a hematologic toxin, were not detected in wafer fabrication sites in this study. Among reproductive toxic substances, n-butyl acetate was not detected, but fluorides and PGMEA existed in small amounts in the air. This investigation was focused on the air-borne chemical concentrations only in regular working conditions. Unconditional exposures during spills and/or maintenance tasks and by-product chemicals were not included. Supplementary studies might be required.

A Study of Droplets and Icing Characteristics on Injector in a Liquid Phase LPG Injection Engine (액상분사식 LPG엔진 인젝터의 후적 및 아이싱 특성에 관한 연구)

  • Kim, Chang-Up;Choi, Kyo-Nam;Kang, Kern-Yong;Park, Cheol-Woong
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.38-44
    • /
    • 2007
  • Since the Liquid Phase LPG injection (LPLI) system has Advantages in power generation and emission characteristics compared to the mixer-type fuel-supply system, a variety of studies regarding LPLi system has been conducted and its applications are made in automobile industry. However, the heat extraction due to the evaporation of liquid fuel, causes not only a post-accumulation of fuel but also an icing phenomenon which is a frost of moisture in the air around the nozzle tip. Since there exists a difficulty in the accurate control of air fuel ratio in both fuel supply systems, it can result in poor engine performance and a large amount of harmful emissions. This research examines the characteristics of icing phenomenon and develops anti-icing bushing to prevent an icing on the surface of the injection tip. It was found that n-butane, which has a relatively high boiling point ($-0.5^{\circ}C$), was a main species of post-accumulation. Also the results show that the post-accumulation problem was allevaited the utilization of a large inner to outer bore ratio and smooth surface roughness. In addition, an icing phenomenon and its formation process were found to be mainly affected by the humidity and the temperature of inlet air in an inlet duct. Also, it was observed that an icing phenomenon is lessened using aluminum bushing whose end coincides with the end of fuel injection tip in length.

  • PDF

Evaluation of Air Contaminants Concentrations and Ventilation Systems in Governmental Agency and University Laboratories (국내 정부출연연구기관 및 대학교 실험실 공기 오염물질 농도 및 환기시스템 평가)

  • Ha, Ju-Hyun;Shin, Yong-Chul;Lee, Hyun-Seok;Paik, Samuel Y.;Yi, Gwang-Yong;Lee, Byeong-Ku
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.1
    • /
    • pp.63-69
    • /
    • 2010
  • This study was conducted to compare the concentration of various air contaminants in nine different laboratories during routine activities. Volatile organic compounds (VOC) were sampled and analyzed using NIOSH Method 1500 and asbestos fibers were sampled and analyzed using NIOSH Method 9002 and 7400. Detectable levels of acetone, toluene and ethanol were found in all the laboratories and xylene and n-hexane were detected in eight of the nine laboratories. All the VOC concentrations were well below the Korean Ministry of Labor's Exposure Limit and American Conference of Governmental Industrial Hygienists' (ACGIH) Threshold Limit Values (TLVs). Total VOC concentrations at the university laboratories were significantly higher than those at governmental agency laboratories. Airborne fiber concentrations were below 0.01 fibers/cc, while the concentration of chrysotile was 2% in insulation materials sprayed on the ceiling of one laboratory. While all the governmental agency laboratories (n=4) had fume hoods, two out of the five university laboratories did not have fume hoods. The capture velocity of half of the fume hoods were below the maintenance standard(0.4 m/sec). In conclusion, the study suggests that the current controls in place at both university and government agency laboratories are not sufficient in limiting exposure to harmful chemicals to non-detectable levels, though they appear to be adequate in protecting workers to levels below applicable occupational exposure limits. The study also suggests that researchers working in university laboratories may be exposed to greater levels of contaminant than those working in government agency laboratories.

Characterization of Nivalenol-Producing Fusarium culmorum Isolates Obtained from the Air at a Rice Paddy Field in Korea

  • Kim, Da-Woon;Kim, Gi-Yong;Kim, Hee-Kyoung;Kim, Jueun;Jeon, Sun Jeong;Lee, Chul Won;Lee, Hyang Burm;Yun, Sung-Hwan
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.182-189
    • /
    • 2016
  • Together with the Fusarium graminearum species complex, F. culmorum is a major member of the causal agents of Fusarium head blight on cereals such as wheat, barley and corn. It causes significant yield and quality losses and results in the contamination of grain with mycotoxins that are harmful to humans and animals. In Korea, F. culmorum is listed as a quarantine fungal species since it has yet to be found in the country. In this paper, we report that two isolates (J1 and J2) of F. culmorum were collected from the air at a rice paddy field in Korea. Species identification was confirmed by phylogenetic analysis using multilocus sequence data derived from five genes encoding translation elongation factor, histone H3, phosphate permease, a reductase, and an ammonia ligase and by morphological comparison with reference strains. Both diagnostic PCR and chemical analysis confirmed that these F. culmorum isolates had the capacity to produce nivalenol, the trichothecene mycotoxin, in rice substrate. In addition, both isolates were pathogenic on wheat heads and corn stalks. This is the first report on the occurrence of F. culmorum in Korea.

Performance of Nano Ceramic Filter for the Removal of Ultra Fine Particles (초미세입자 제거를 위한 나노세라믹 필터의 성능 평가)

  • Kim, Jong-Won;Ahn, Young-Chull;Yi, Byeong-Kwon;Jeong, Hyeon-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.751-756
    • /
    • 2009
  • In the perspective of saving energy in buildings, the high performance of insulation and air tightness for improving the heating and the cooling efficiency, has brought economically positive effects. However, these building energy saving technologies cause the lack of ventilation, which is the direct cause of increasing the indoor contaminants, and is also very harmful to the residents, because they spend over 90% of their time indoors. Therefore, the ventilation is important to keep the indoor environment clean and it can also save the energy consumption. In this study, a HEPA type nano ceramic filter is designed as a passive ventilation system to collect airborne particles and to supply fresh outdoor air. The double layer filter, which has $30{\mu}m$ in diameter at the conditions of 10wt% of concentration and 3kV/cm of the electric intensity, is produced by electrospinning. The filtration coating technology is confirmed in the solution with $SiO_2$ nano particles using polymer nano fibers. Also double layer filters are coated with $SiO_2$ nano particles and finally the porous construction materials are made by sintering in the electric furnace at $200{\sim}1400^{\circ}C$. The efficiency is measured 96.67% at the particle size of $0.31{\mu}m$, which is slightly lower than HEPA filter. However the efficiency is turned out to be sufficient.

  • PDF

Studies on the Exhaust Gas Characteristics of the Vehicle Diesel according to the Test Mode and Ambient Temperature (시험모드 및 대기온도에 따른 경유자동차의 배출가스 특성에 관한 연구)

  • Lee, Jung-Cheon;Jeon, Cheol-Hwan;Kim, Ki-Ho;Oh, Sang-Gi;Park, An-Young
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.93-98
    • /
    • 2016
  • Environmental problems are issued throughout all over the world and which are needed the strength management. In case of the diesel cars are also being developing and studying continuously about various after-treatments device such as EGR, LNT, SCR, DPF and DOC etc. which are used for decreasing $NO_X$ and PM. The air temperature goes up to $39^{\circ}C$ in summer and goes down to $-20^{\circ}C$ in winter because of the location. These changing of the temperature can effect to the engine and harmful exhaust gas discharged and it seems to make the increase - decrease different. The result of the evaluate while changing between the test-mode and the air temperature, which expresses that WLTC-mode is 2.2 times and FTP_75 mode is 4.1~6 times increase to the comparison NEDC-mode of the current regulation. The exhaust characteristic of $NO_X$ by the changing temperature increases in the low temperature and 4.3 times in $14^{\circ}C$ and 21.3 times in $-7^{\circ}C$ with maximum when it compares to $23^{\circ}C$. The fuel efficiency of the different weight car and engine with same data is about 5.7 % in maximum.

Cabin Air Filter Media Produced by Needle Punching Process (니들펀치 공정에 의한 캐빈에어필터 여재의 제조)

  • Park, Seungkyu;Kim, Heonchang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.561-564
    • /
    • 2009
  • Filter media finely interspersed with activated carbons were prepared by a needle punching process without using chemical binders. Their characteristics were investigated efficiently to abate environmentally harmful gas such as acetaldehyde, and were compared with those of cabin air filter coated with activated carbons by using chemical binders. These combination filters were installed on a vehicle fan placed in a test chamber of capacity similar to the interior volume of a commercially available passenger car, and the efficiency of acetaldehyde abatement was measured as a function of time. The filter utilizing chemical binders showed somewhat better performance for the elimination of acetaldehyde despite the adverse effect of the chemical binder that would clog the micropores of the activated carbons. It turned out that the needle punching process had the activated carbons agglomerated due to hydrophobic interactions, resulting in a relatively larger void area than that of the filter utilizing chemical binders.

Treatment of Aquacultural Recirculating Water by Foam Separation - II. Characteristics of Solid Removal - (포말 분리법을 이용한 양어장 순환수 처리 - II. 고형물 제거특징 -)

  • SUH Kuen-Hack;LEE Min-Gyu;LEE Min-Soo;KIM Byong-Jin;KIM Eun-Jung;CHO Moon-Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.334-339
    • /
    • 1997
  • The feasibility of foam separation to remove solid produced from fish culture water was investigated. Performance characteristics of foam separator were highly dependent upon the operating parameters which were superficial air velocity, Hydraulic retention time (HRT), and foam height. About $50\%$ of the total protein contained in a sample of fish culture water could be removed by foam separator. The removal efficiencies of protein, T-N, TA, and solid components were increased with increasing superficial air velocity and HRT. The combined effects of these operational variables show that removal rates of TVS increase with increasing superficial air velocity and HRT, and decrease as foam height goes up. It could be confirmed that foam separator might offer good perspective for removal of harmful components such as TA and TVS in aquacultural recirculating water.

  • PDF

Analysis of Chemical Compounds of Gaseous and Particulate Pollutants from the Open Burning of Agricultural HDPE Film Waste

  • Kim, Tae-Han;Choi, Boo-Hun;Kook, Joongjin
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.6
    • /
    • pp.585-593
    • /
    • 2021
  • Background and objective: Illegal open-air incineration, which is criticized as a leading source of air pollutants among agricultural activities, currently requires constant effort and attention. Countries around the world have been undertaking studies on the emission of heavy metal substances in fine dust discharged during the incineration process. A precise analytical method is required to examine the harmful effects of particulate pollutants on the human body. Methods: In order to simulate open-air incineration, the infrastructure needed for incineration tests complying with the United States Environmental Protection Agency (EPA) Method 5G was built, and a large-area analysis was conducted on particulate pollutants through automated scanning electron microscopy (SEM)-energy-dispersive X-ray spectroscopy (EDS). For the test specimen, high-density polyethylene (HDPE) waste collected by the DangJin Office located in Choongcheongnam-do was used. To increase the identifiability of the analyzed particles, the incineration experiment was conducted in an incinerator three times after dividing the film waste into 200 g specimens. Results: Among the metal particulate matters detected in the HDPE waste incineration test, transition metals included C (20.8-37.1 wt%) and O (33.7-37.9 wt%). As for other chemical matters, the analysis showed that metal particulate matters such as metalloids, alkali metals, alkaline earth metals, and transition metals reacted to C and C-O. Si, a representative metalloid, was detected at 14.8-20.8 wt%, showing the highest weight ratio except for C and O. Conclusion: In this study, the detection of metal chemicals in incinerated particulate matters was effectively confirmed through SEM-EDS. The results of this study verified that HDPE waste adsorbs metal chemicals originating from soil due to its own properties and deterioration, and that when incinerated, it emits particulate matters containing transition metals and other metals that contribute to the excessive production and reduction of reactive oxygen species.

Analysis of Regional Development Attractiveness of Comprehensive Air-quality Index and Gross Domestic Product - Focusing on Cities and Counties in Chungcheongnam-do - (통합대기환경지수와 지역내총생산에 의한 지역개발매력도 분석 - 충청남도 시·군을 대상으로 -)

  • Lee, Byung-Hark;Jung, Nam-Su
    • Journal of Korean Society of Rural Planning
    • /
    • v.29 no.3
    • /
    • pp.91-97
    • /
    • 2023
  • The purpose of this research is to apply the regional development attractiveness of the national level determined in the previous study to the city and county level of Chungcheongnam-do. We verified results with the population change of the floating population data. In order to measure regional development attractiveness in 2020, Chungcheongnam-do's integrated air environment index and per capita gross regional product were gathered. Population movement data over the past five years have been used to analyze population changes in the floating population data. Regional development attractiveness depended on the data of GDP per capita, which had a large difference between the maximum and minimum values. The rate of increase or decrease in population change by city and county in Chungcheongnam-do over the past five years has changed significantly since 2021 and characteristics of each group were grouped into four groups. Based on the environment and economic feasibility of the region, it can be the starting point for a new analysis of Korea's regional development projects and the selection of target sites. Policy suggestions can also be made in spatial plans such as short-term comprehensive plans, long-term comprehensive plans, and development plans. It can be a limit of this research that regional development attractiveness was determined by the relatively large per capita gross domestic product. It is necessary to further develop regional development attractiveness by closely investigating the characteristics of the region, social problems, and emissions of environmentally harmful substances.