• Title/Summary/Keyword: Hardware Test

Search Result 1,066, Processing Time 0.034 seconds

Development of 64-Channel 12-bit 1ks/s Hardware for MCG Signal Acquisition (심자도 신호 획득을 위한 실시간 64-Ch 12-bit 1ks/s 하드웨어 개발)

  • Lee, Dong-Ha;Yoo, Jae-Tack
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.902-905
    • /
    • 2004
  • A heart diagnosis system adopts Superconducting Quantum Interface Device(SQUID) sensors for precision MCG signal acquisitions. Such system is composed of hundreds of sensors, requiring fast signal sampling and precise analog-digital conversions(ADC). Our development of hardware board, processing 64-channel 12-bit 1ks/s, is built by using 8-channel ADC chips, 8-bit microprocessors, SPI interfaces, and parallel data transfers between microprocessors to meet the 1ks/s, i.e. 1 ms speed. The test result shows that the signal acquisition is done in 168 usuc which is much shorter than the required 1 ms period. This hardware will be extended to 256 channel data acquisition to be used for the diagnosis system.

  • PDF

An Evaluation on the Limit cycle Analysis Methods using the Hardware in the Loop Simulation (실시간 모의시험을 통한 리밋 사이클 해석 결과 분석)

  • Jeon, Sang-Woon
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.145-157
    • /
    • 2012
  • The novel limit cycle analysis of the attitude control system using jet thrusters was presented based on a phase plane method by paper. It was shown in the software simulation results that the analysed results of the limit cycle was more accurate than those of the Haloulakos' method. But it was not verified in the real system. The proposed method is verified in the reaction control system for KSLV-I via an real time hardware in the loop simulation. It can be shown in this test that analyzed result of the limit cycle is very accurate.

Test of MMC HVDC Control System using Hardware-in-the-Loop Simulation (HILS를 이용한 MMC HVDC 제어 시스템 시험)

  • Lee, Dong-Gyu;Lee, Jun-Chol;Choi, Jong-Yun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.339-340
    • /
    • 2015
  • 본 논문에서는 HVDC 제어 시스템의 기능 검증을 위해 구축한 RTDS 기반의 HILS(Hardware-In-the Loop Simulation)시스템 및 시험 결과를 소개하였다. MMC 기반 VSC HVDC는 다수의 직렬 연결된 SM(Sub-Module)을 개별 제어해야 하므로 기존의 LCC HVDC 및 2/3-Level 컨버터 기반의 VSC HVDC와 같은 설비들보다 훨씬 더 복잡한 VBE 구조를 가지고 있다. 또한 짧은 시간 내에 정밀한 제어가 가능해야 하므로 높은 제어 정밀도가 요구된다. (주)효성에서는 제어 시스템의 성능 검증을 위해 RTDS 기반의 HILS(Hardware-In-the Loop Simulation)시스템을 구축하였으며, 이를 이용하여 HVDC 제어 시스템의 성능 시험을 수행하였다. 본 논문에서는 구축된 RTDS 기반의 HILS 시스템 및 시험 결과를 소개하였다.

  • PDF

Development of Hardware In the Loop System(HILS) for Hydraulic Excavator (굴삭기용 Hardware In the Loop System(HILS) 개발)

  • 임태형;조현철;안태규;양순용;이홍선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.468-473
    • /
    • 2004
  • This paper deal with basic concept of Hardware In the Loop System(HILS) for hydraulic excavator. Hydraulic excavator has many nonlinearities because of P-Q diagram, dead zone and saturation of valve, single acting cylinder, heavy manipulator. So, actual test is needed when new component or control algorithm is developed but many restrictions exist. Hydraulic circuit of excavator is too complex to model mathematically but dynamic equation of manipulator has made good progress in previous studies. Basic concept of HILS and AMESim model of hydraulic components is contained in this paper.

  • PDF

Development of Hardware-in-the loop Simulator for ABS/TCS (ABS 와 TCS 를 위한 HIL 시뮬레이터 개발에 관한 연구)

  • Lee, Han-Ju;Park, Yoon-Ki;Suh, Myung-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.83-90
    • /
    • 1999
  • The prevalence of microprocessor-based controllers in automotive system has greatly increased the need for tools which can be used to validate and test control system over their full range of operation. The objective of this paper is to develop a real time simulator of an anti-lock braking system and traction control system by the methodology of using hardware-in-the-loop simulation based on a personal computer. By use of this simulator, the analyses of commercial electronic control units and components for ABS/TCS were performed successfully. The simulator of this research can be applied to development of more advanced control system(such as vehicle dynamic control system) and other automotive system.

  • PDF

A Lane-change Collision Avoidance Algorithm for Autonomous Vehicles and HILS(Hardware-In-the-Loop Simulation) Test (자율주행 차량의 충돌회피 차선변경 제어 알고리즘 개발과 HILS 시험)

  • 류제하;김종협
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.240-248
    • /
    • 1999
  • This paper presents a lane-change collision avoidance control algorithm for autonomous vehicles that will be used in AHS(Automated Highway System). In the proposed control algorithm, nominal control inputs are generated by solving the inverse vehicle dynamic equations of motion for a lane-change maneuver. In addition, a corrective steering input from preview as well as DYC (Direct Yaw Moment Control) may be included to reduce unpredictable errors and to insure yaw directional stability, respectively. The performance of the algorithm is evaluated with an ABS HILS system which consist of 17 DOF vehicle model and real ABS hardware parts. The HILS simulation results show that the proposed algorithm may be used for emergency lane-change maneuvers for autonomous vehicles.

  • PDF

Development of Hardware-in-the-loop Simulator for TCS (TCS를 위한 HIL 시뮬레이터 개발에 관한 연구)

  • 서명원;이한주;박윤기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.194-205
    • /
    • 1999
  • The prevalence of microprocessor-based controllers in automotive systems has greatly increased the need for tools which can be used to validate and test control systems over their full range of operation. The objective of this paper is to develop a real time simulator of traction control system by the methodology of using hardware-in-loop simulation based on a personal computer. By use of this simulator, the analysis of commercial electronic control units and components for TCS were performed successfully. The simulator of this research can be applied to development of more advanced control systems(suck as vehicle dynamics control system) and other automotive system.

  • PDF

Evaluation of A Direct Yaw Moment Control Algorithm by Brake Hardware-In-The -Loop Simulation (브레이크HILS를 이용한 능동 요모멘트 제어 알고리즘의 평가)

  • 류제하;김호수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.172-179
    • /
    • 1999
  • This paper presents a simple but effective DYC algorithm which enhances vehicle lateral stability by using an anti=lock brake system (ABS). In the proposed algorithm, only the front outer wheel is controlled during cornering maneuver instead of controlling all four wheels because the wheel has the largest role in DYC and it is easy and simple to control the only one wheel. An ABS Hardware - In -The -Loop Simulation ( HILS) system that may be used to realistically test real vehicle dynamic behavior in a lab is used for evaluating the proposed DYC algorithm in severe situations where a vehicle is destabilized without DYC . The HILS results show that the proposed DYC algorithm has the potential of maintaining vehicle stability in some dangerous situations.

  • PDF

Fault Diagnosis and Performance Evaluation of Auxiliary Block for Korean High-Speed Train (한국형 고속전철 보조전원장치 고장진단과 성능평가)

  • Han Young-Jae;Kim Gi-Khwan;Kim Seog-Won;Kim Jong-Young;Kim Hyun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1449-1454
    • /
    • 2004
  • For the research, we developed the hardware and software of the measurement system for on-line test and evaluation. The software controls the hardware of the measurement data and acts as a interface between users and the system hardware. In this paper, we studied performances of the auxiliary block for high-speed railway vehicle. In order to performance these works, the conversion system was developed. Using this system, we obtained the important results, such as voltage values for the battery charger and auxiliary block. Also, we diagnosed the faults and performed the evaluation for auxiliary block using the measurement system and data.

  • PDF

A Design of Platform for Embedded System's development (임베디드 시스템 플랫폼 개발을 위한 시뮬레이션 환경 구현)

  • Lee, Joong-Hee;Oh, Hyun-Seok;Sung, Kwang-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.781-782
    • /
    • 2006
  • This treatise proposed environment for Embedded system's development. Virtual platform can help to solve problem that hardware designer can experience at design process of hardware. Compose circuit of most suitable that is verified before mix parts by various kinds method and compose circuit by board level because can do simulation with software and software that is optimized to hardware and offer flexibility that can test. Therefore, can shorten expense that is cost in development and time. Embody development platform for 8051 systems for verification of development platform, and compose and verified system in various kinds structure.

  • PDF