• Title/Summary/Keyword: Hardware In the Loop

Search Result 525, Processing Time 0.023 seconds

Distance Sensing of Moving Target with Frequency Control of 2.4 GHz Doppler Radar (2.4 GHz 도플러 레이다의 주파수 조정을 통한 이동체 거리 센싱)

  • Baik, Kyung-Jin;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.152-159
    • /
    • 2019
  • In general, a Doppler radar can measure only the velocity of a moving target. To measure the distance of a moving target, it is necessary to use a frequency-modulated continuous wave or pulse radar. However, the latter are very complex in terms of both hardware as well as signal processing. Moreover, the requirement of wide bandwidth necessitates the use of millimeter-wave frequency bands of 24 GHz and 77 GHz. Recently, a new kind of Doppler radar using multitone frequency has been studied to sense the distance of moving targets in addition to their speed. In this study, we show that distance sensing of moving targets is possible by adjusting only the frequency of a 2.4 GHz Doppler radar with low cost phase lock loop. In particular, we show that distance can be sensed using only alternating current information without direct current offset information. The proposed technology satisfies the Korean local standard for low power radio equipment for moving target identification in the 2.4 GHz frequency band, and enables multiple long-range sensing and radio-frequency identification applications.

Acoustic Event Detection and Matlab/Simulink Interoperation for Individualized Things-Human Interaction (사물-사람 간 개인화된 상호작용을 위한 음향신호 이벤트 감지 및 Matlab/Simulink 연동환경)

  • Lee, Sanghyun;Kim, Tag Gon;Cho, Jeonghun;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.4
    • /
    • pp.189-198
    • /
    • 2015
  • Most IoT-related approaches have tried to establish the relation by connecting the network between things. The proposed research will present how the pervasive interaction of eco-system formed by touching the objects between humans and things can be recognized on purpose. By collecting and sharing the detected patterns among all kinds of things, we can construct the environment which enables individualized interactions of different objects. To perform the aforementioned, we are going to utilize technical procedures such as event-driven signal processing, pattern matching for signal recognition, and hardware in the loop simulation. We will also aim to implement the prototype of sensor processor based on Arduino MCU, which can be integrated with system using Arduino-Matlab/Simulink hybrid-interoperation environment. In the experiment, we use piezo transducer to detect the vibration or vibrates the surface using acoustic wave, which has specific frequency spectrum and individualized signal shape in terms of time axis. The signal distortion in time and frequency domain is recorded into memory tracer within sensor processor to extract the meaningful pattern by comparing the stored with lookup table(LUT). In this paper, we will contribute the initial prototypes for the acoustic touch processor by using off-the-shelf MCU and the integrated framework based on Matlab/Simulink model to provide the individualization of the touch-sensing for the user on purpose.

Study on the Development of Control Strategy for Series Hybrid Electric Bus based on HILS (HILS 기반 Series HEV 버스 주행 전략 개발에 대한 연구)

  • Jung, Dae-Bong;Kim, Min-Jae;Kang, Hyung-Mook;Min, Kyoung-Doug;Cho, Yong-Rae;Lee, Chun-Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.83-91
    • /
    • 2012
  • In recent days, the study on hybridization of the heavy-duty is going on, actively. Especially, the improvement of fuel economy can be maximized in the intra-city bus because it drives the fixed route. For developing the hybrid electric intra-city bus, optimized control strategy which is possible to be applied with real vehicle is necessary. If the real-time control strategy is developed based on the HILS, it is possible to verify the real-time ability and fail-safety function which has the vehicle stay in safe state when the functional errors are occurred. In this study, the HILS system of series hybrid electric intra-city bus is developed to verify the real time control strategy and the fail-safety functions. The main objective of the paper is to build the HILS system for verifying the control strategy (rule-based control) which is implemented to reflect the Dynamic Programming results and fail-safety functions.

Optimized Sigma-Delta Modulation Methodology for an Effective FM Waveform Generation in the Ultrasound System (효율적인 주파수 변조된 초음파 파형 발생을 위한 최적화된 시그마 델타 변조 기법)

  • Kim, Hak-Hyun;Han, Ho-San;Song, Tai-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.429-440
    • /
    • 2007
  • A coded excitation has been studied to improve the performance for ultrasound imaging in term of SNR, imaging frame rate, contrast to tissue ratio, and so forth. However, it requires a complicated arbitrary waveform transmitter for each active channel that is typically composed of a multi-bit Digital-to-Analog Converter (DAC) and a linear power amplifier (LPA). Not only does the LPA increase the cost and size of a transmitter block, but it consumes much power, increasing the system complexity further and causing a heating-up problem. This paper proposes an optimized 1.5bit fourth order sigma-delta modulation technique applicable to design an efficient arbitrary waveform generator with greatly reduced power dissipation and hardware. The proposed SDM can provide a required SQNR with a low over-sampling ratio of 4. To this end, the loop coefficients are optimized to minimize the quantization noise power in signal band while maintaining system stability. In addition, the decision level for the 1.5 bit quantizer is optimized for a given input waveform, which results in the SQNR improvement of more than 5dB. Computer simulation results show that the SQNR of a FM(frequency modulated) signal generated by using the proposed method is about 26dB, and the peak side-lobe level (PSL) of its compressed waveform on receive is -48dB.

Design and Realization of a Digital PV Simulator with a Push-Pull Forward Circuit

  • Zhang, Jike;Wang, Shengtie;Wang, Zhihe;Tian, Lixin
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.444-457
    • /
    • 2014
  • This paper presents the design and realization of a digital PV simulator with a Push-Pull Forward (PPF) circuit based on the principle of modular hardware and configurable software. A PPF circuit is chosen as the main circuit to restrain the magnetic biasing of the core for a DC-DC converter and to reduce the spike of the turn-off voltage across every switch. Control and I/O interface based on a personal computer (PC) and multifunction data acquisition card, can conveniently achieve the data acquisition and configuration of the control algorithm and interface due to the abundant software resources of computers. In addition, the control program developed in Matlab/Simulink can conveniently construct and adjust both the models and parameters. It can also run in real-time under the external mode of Simulink by loading the modules of the Real-Time Windows Target. The mathematic models of the Push-Pull Forward circuit and the digital PV simulator are established in this paper by the state-space averaging method. The pole-zero cancellation technique is employed and then its controller parameters are systematically designed based on the performance analysis of the root loci of the closed current loop with $k_i$ and $R_L$ as variables. A fuzzy PI controller based on the Takagi-Sugeno fuzzy model is applied to regulate the controller parameters self-adaptively according to the change of $R_L$ and the operating point of the PV simulator to match the controller parameters with $R_L$. The stationary and dynamic performances of the PV simulator are tested by experiments, and the experimental results show that the PV simulator has the merits of a wide effective working range, high steady-state accuracy and good dynamic performances.

Stable Standby-mode Implementation of Multi-output Power Supply using a New Load Current Estimation Technique with Linear Regulator (다중 출력 전원공급장치의 안정적 대기전력 구현을 위한 새로운 방식의 부하전류 측정기법 구현)

  • Lee, Jong-Hyun;Jung, An-Yeol;Kim, Dong-Joon;Park, Joung-Hu;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.88-95
    • /
    • 2011
  • In this paper, a new standby-mode control method for multiple output switching-mode power-supply is suggested, which uses the control signal of the feedback compensator of the inner loop in the linear voltage regulator located at the transformer secondary side, as the load current information. Conventional method has a problem that standby mode occurs depending only on the load condition of the main controller output, which makes the other secondary side output very inaccurate by burst mode operation. The proposed method detects all the load current information and operates in burst mode only when the all of them are light load condition. Minimum of the additional components are required for the implementation of the proposed method because the load information is obtained from the existing feedback circuit of the post-stage linear regulator. In this paper, the operating principles of the proposed standby-mode circuit are presented with an numerical analysis, and are verified by 25W hardware prototype implementation.

Performance analysis and verification of underwater acoustic communication simulator in medium long-range multiuser environment (중장거리 다중송신채널 환경에서 수중음향통신 시뮬레이터 성능 분석 및 검증)

  • Park, Heejin;Kim, Donghyeon;Kim, J.S.;Song, Hee-Chun;Hahn, Joo Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.451-456
    • /
    • 2018
  • UAComm (Underwater Acoustic Communication) is an active research area, and many experiment has been performed to develop UAComm system. In this paper, we investigate the possibility of modifying and applying VirTEX (Virtual Time series EXperiment) to medium long range MIMO (Multiple-Input Multiple-Output) UAComm of about 20 km range for the analysis and performance prediction of UAComm system. Since VirTEX is a time-domain simulator, the generated time series can be used in HILS (Hardware In the Loop Simulation) to develop UAComm system. The developed package is verified through comparing with the sea-going FAF05 (Focused Acoustic Field 2005) experimental data. The developed simulator can be used to predict the performance of UAComm system, and even replace the expensive sea-going experiment.

Verification of Flight Control Law Similarity and HILS Environment Reliability for Fighter Aircraft (전투기급 비행제어법칙 상사성 및 HILS 환경 신뢰성 검증)

  • Ahn, Seong-Jun;Kim, Chong-Sup;Cho, In-Je;Lee, Eun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.701-708
    • /
    • 2009
  • The flight control law of developed flight control computer(DFLCC) is developed based on operation flight program of advanced trainer aircraft full scale development final configuration. The flight control law design is used common use development tool in GUI(Graphic User Interface) environment. The flight control law transformed to C-Code is reflected in OFP. The OFP is verified by the standardized verification process. But, before standardized verification process, we need preliminary verification process such as similarity of flight control law and reliability of developed HILS. Similarity of flight control law is verified by comparing the aircraft response of advanced trainer aircraft and those of the developed control law. Also, reliability of developed HILS is verified by comparing the aircraft response of HILS and Non-real time simulation result. This paper verifies similarity of developed control law and reliability of HILS environment as comparing aircraft response.

Operation System Design of Distribution Feeder with Distributed Energy Resources (분산전원이 연계된 배전선로의 운영시스템 설계)

  • Kim, Seong-Man;Chang, Young-Hak;Kim, Kyeong-Hun;Kim, Sul-Ki;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1183-1194
    • /
    • 2021
  • Traditionally, electric power systems have been known as the centralized structures, which is organized into placing customers at the end of the supply chain. However, recent decades have witnessed the emergence of distributed energy resources(:DERs) such as rooftop solar, farming PV system, small wind turbines, battery energy storage systems and smart home appliances. With the emergence of distributed energy resources, the role of distributed system operators(:DSOs) will expand. The increasing penetration of DERs could lead to a less predictable and reverse flow of power in the system, which can affect the traditional planning and operation of distribution and transmission networks. This raises the need for a change in the role of the DSOs that have conventionally planned, maintained and managed networks and supply outages. The objective of this research is to designed the future distribution operation system with multi-DERs and the proposed distribution system model is implemented by hardware-in-the-loop simulation(HILS). The test results show the normal operation domain and reduction of distribution line loss.

Power Distribution Strategy for Wireless Tram with Hybrid Energy Storage System (하이브리드 에너지 저장장치를 탑재한 무가선 트램의 전력분배전략)

  • Kang, Kyung-Jin;Oh, Yong-Kuk;Lee, Jee-Ho;Yeom, Min-Kyu;Kwak, Jae-Ho;Lee, Hyeong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1615-1621
    • /
    • 2014
  • A wireless tram which runs without catenary and instead uses batteries installed in the tram has been recently researched actively. This paper presents a new method maximizing absorption of regenerative energy of a wireless tram and extending life cycle of the energy storage device in the wireless tram by applying line-optimized charging and discharging scenario. Energy efficiency and life cycle of energy storage system (ESS) are highly dependent on the characteristic of operating conditions. For example, frequent charge and discharge with high power cause the problems that decrease the battery life cycles. Hybrid energy storage system (HESS) is combination of two ESSs which have complementary characteristics to each other. HESS can provide even better functionality and performance than the battery only ESS due to the synergy effect of two ESSs. This paper also provides a power distribution strategy and driving scenarios which increase the life cycle and energy efficiency of the HESS consisting of a battery and an ultra-capacitor. The developed strategy was tested and verified by a hardware-in-the-loop-simulation (HILS) system which emulates the a wireless tram.