• Title/Summary/Keyword: Hardware Compression

Search Result 194, Processing Time 0.067 seconds

A STUDY ON AMALGAM CAVITY FRACTURE WITH THREE DIMENSIONAL FINITE ELEMENT METHOD (아말감 와동의 파절에 관한 3차원 유한요소법적 연구)

  • Kim, Han-Wook;Um, Chung-Moon;Lee, Chung-Sik
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.345-371
    • /
    • 1994
  • Restorative procedures can lead to weakening tooth due to reduction and alteraton of tooth structure. It is essential to prevent fractures to conserve tooth. Among the several parameters in cavity designs, cavity isthmus and depth are very important. In this study, MO amalgam cavity was prepared on maxillary first premolar. Three dimensional. finite element models were made by serial photographic method and cavity depth(1.7mm, 2.4mm) and isthmus (11 4, 1/3, 1/2 of intercuspal distance) were varied. linear, eight and six-nodal, isoparametric brick elements were used for the three dimensional finite element model. The periodontal ligament and alveolar bone surrounding the tooth were excluded in these models. Three types model(B, G and R model) were developed. B model was assumed perfect bonding between the restoration and cavity wall. Both compressive and tensile forces were distributed directly to the adjacent regions. G model(Gap Distance: 0.000001mm) was assumed the possibility of play at the interface simulated the lack of real bonding between the amalgam and cavity wall (enamel and dentin). When compression occurred along the interface, the forces were transferred to the adjacent regions. However, tensile forces perpendicular to the interface were excluded. R model was assumed non-connection between the restoration and cavity wall. No force was transferred to the adjacent regions. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed the displacement, von Mises stress, 1 and 2 direction normal stress and strain with FEM software ABAQUS Version 5.2 and hardware IRIS 4D/310 VGX Work-station. The results were as follows: 1. G model showed stress and strain patterns between Band R model. 2. B model and G model showed the bending phenomenon in the displacement. 3. R model showed the greatest amount of the displacement of the buccal cusp followed by G and B model in descending order. G model showed the greatest amount of the displacement of the lingual cusp followed by B and R model in descending order. 4. B model showed no change of the displacement as increasing depth and width of the cavity. G and R model showed greater displacement of the buccal cusp as increasing depth and width of the cavity, but no change in the displacement of the lingual cusp. 5. As increasing of the width of the cavity, stress and strain were not changed in B model. Stress and strain were increased on the distal marginal ridge and buccopulpal line angle in G and R model. The possibility of the tooth fracture was increased. 6. As increasing of the depth of the cavity, stress and strain were not changed in B and G model. Stress and strain were increased on the distal marginal ridge and buccopulpal line angle in R model. The possibility of the tooth fracture was increased.

  • PDF

Design of a Holter Monitoring System with Flash Memory Card (플레쉬 메모리 카드를 이용한 홀터 심전계의 설계)

  • 송근국;이경중
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.251-260
    • /
    • 1998
  • The Holter monitoring system is a widely used noninvasive diagnostic tool for ambulatory patient who may be at risk from latent life-threatening cardiac abnormalities. In this paper, we design a high performance intelligent holter monitoring system which is characterized by the small-sized and the low-power consumption. The system hardware consists of one-chip microcontroller(68HC11E9), ECG preprocessing circuit, and flash memory card. ECG preprocessing circuit is made of ECG preamplifier with gain of 250, 500 and 1000, the bandpass filter with bandwidth of 0.05-100Hz, the auto-balancing circuit and the saturation-calibrating circuit to eliminate baseline wandering, ECG signal sampled at 240 samples/sec is converted to the digital signal. We use a linear recursive filter and preprocessing algorithm to detect the ECG parameters which are QRS complex, and Q-R-T points, ST-level, HR, QT interval. The long-term acquired ECG signals and diagnostic parameters are compressed by the MFan(Modified Fan) and the delta modulation method. To easily interface with the PC based analyzer program which is operated in DOS and Windows, the compressed data, that are compatible to FFS(flash file system) format, are stored at the flash memory card with SBF(symmetric block format).

  • PDF

The Implementation of Multi-Channel Audio Codec for Real-Time operation (실시간 처리를 위한 멀티채널 오디오 코덱의 구현)

  • Hong, Jin-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2E
    • /
    • pp.91-97
    • /
    • 1995
  • This paper describes the implementation of a multi-channel audio codec for HETV. This codec has the features of the 3/2-stereo plus low frequency enhancement, downward compatibility with the smaller number of channels, backward compatibility with the existing 2/0-stereo system(MPEG-1 audio), and multilingual capability. The encoder of this codec consists of 6-channel analog audio input part with the sampling rate of 48 kHz, 4-channel digital audio input part and three TMS320C40 /DSPs. The encoder implements multi-channel audio compression using a human perceptual psychoacoustic model, and has the bit rate reduction to 384 kbit/s without impairment of subjective quality. The decoder consists of 6-channel analog audio output part, 4-channel digital audio output part, and two TMS320C40 DSPs for a decoding procedure. The decoder analyzes the bit stream received with bit rate of 384 kbit/s from the encoder and reproduces the multi-channel audio signals for analog and digital outputs. The multi-processing of this audio codec using multiple DSPs is ensured by high speed transfer of date between DSPs through coordinating communication port activities with DMA coprocessors. Finally, some technical considerations are suggested to realize the problem of real-time operation, which are found out through the implementation of this codec using the MPEG-2 layer II sudio coding algorithm and the use of the hardware architecture with commercial multiple DSPs.

  • PDF

Bit-serial Discrete Wavelet Transform Filter Design (비트 시리얼 이산 웨이블렛 변환 필터 설계)

  • Park Tae geun;Kim Ju young;Noh Jun rye
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4A
    • /
    • pp.336-344
    • /
    • 2005
  • Discrete Wavelet Transform(DWT) is the oncoming generation of compression technique that has been selected for MPEG4 and JEPG2000, because it has no blocking effects and efficiently determines frequency property of temporary time. In this paper, we propose an efficient bit-serial architecture for the low-power and low-complexity DWT filter, employing two-channel QMF(Qudracture Mirror Filter) PR(Perfect Reconstruction) lattice filter. The filter consists of four lattices(filter length=8) and we determine the quantization bit for the coefficients by the fixed-length PSNR(peak-signal-to-noise ratio) analysis and propose the architecture of the bit-serial multiplier with the fixed coefficient. The CSD encoding for the coefficients is adopted to minimize the number of non-zero bits, thus reduces the hardware complexity. The proposed folded 1D DWT architecture processes the other resolution levels during idle periods by decimations and its efficient scheduling is proposed. The proposed architecture requires only flip-flops and full-adders. The proposed architecture has been designed and verified by VerilogHDL and synthesized by Synopsys Design Compiler with a Hynix 0.35$\mu$m STD cell library. The maximum operating frequency is 200MHz and the throughput is 175Mbps with 16 clock latencies.