Cloud computing is becoming an effective and efficient way of computing resources and computing service integration. Through centralized management of resources and services, cloud computing delivers hosted services over the internet, such that access to shared hardware, software, applications, information, and all resources is elastically provided to the consumer on-demand. The main enabling technology for cloud computing is virtualization. Virtualization software creates a temporarily simulated or extended version of computing and network resources. The objectives of virtualization are as follows: first, to fully utilize the shared resources by applying partitioning and time-sharing; second, to centralize resource management; third, to enhance cloud data center agility and provide the required scalability and elasticity for on-demand capabilities; fourth, to improve testing and running software diagnostics on different operating platforms; and fifth, to improve the portability of applications and workload migration capabilities. One of the key features of cloud computing is elasticity. It enables users to create and remove virtual computing resources dynamically according to the changing demand, but it is not easy to make a decision regarding the right amount of resources. Indeed, proper provisioning of the resources to applications is an important issue in IaaS cloud computing. Most web applications encounter large and fluctuating task requests. In predictable situations, the resources can be provisioned in advance through capacity planning techniques. But in case of unplanned and spike requests, it would be desirable to automatically scale the resources, called auto-scaling, which adjusts the resources allocated to applications based on its need at any given time. This would free the user from the burden of deciding how many resources are necessary each time. In this work, we propose an analytical and efficient VM-level scaling scheme by modeling each VM in a data center as an M/M/1 processor sharing queue. Our proposed VM-level scaling scheme is validated via a numerical experiment.
공개키 연산기는 전자상거래 환경에서 사용자 인증, 서명 및 키 분배 등에 있어서 매우 중요한 기반요소이다. 유선망 환경에서는 공인 인증서를 이용한 전자상거래가 이미 활성화되었으나, 무선망 환경에서는 무선 단말기의 제약으로 인하여 아직까지 보편화되지 못하고 있는 실정이다. 본 논문에서는 소프트웨어 프로파일링 기법을 적용하여 공개키 연산기 내부 연산별 부담(Overhead)을 측정하고, 이 정보를 기반으로 통합 설계에 적용할 수 있는 방안을 제시한다. 또한, 통합 시스템의 성능 예측 방안 및 하드웨어와 소프트웨어간의 통신부담을 줄일 수 있는 방안에 대해서 제시하며, 예제 모델로서 EC-Elgamal 알고리즘의 연산과정을 정량적으로 측정하고 분석하였다.
본 논문에서는 H.264AVC baseline 디코더를 ARM926EJ-S 코어를 탑재한 FPGA(XC4VLX60)기반의 타겟 보드와 임베디드용 Linux Kernel 2.4.26의 개발환경에서 SW/HW 분할을 통해 설계 및 구현하였다. 하드웨어 가속기로는 움직임 보상 모듈 디블록킹 필터 모듈, YUV2RGB 변환 모듈을 사용하였으며 AMBA 버스 프로토콜을 통하여 소프트웨어와 함께 동작한다. 참조 소프트웨어(JM 11.0)를 OS(Linux)상에서 하드웨어 가속 모듈을 추가하고 메모리 접근 등을 최소화함으로써 성능을 향상시키고자 노력하였다. 설계된 하드웨어 IP와 시스템은 여러 단계로 검증하였으며 시스템의 복호화 속도 개선을 도모하였다. QCIF (176$\times$144) 영상을 24MHz의 클록 주파수의 타겟 보드상에서 약 2 frames/sec의 결과를 얻었으며 타겟 보드의 주파수를 증가시키고 FPGA영역의 IP를 ASIC으로 구현하면 더 좋은 성능을 기대할 수 있다.
코아(core) 기반의 SoC(System-on-Chip) 설계는 테스트에 관련된 많은 어려운 문제를 일으키고 있다. 그 중에서 방대한 분량의 테스트 데이터와 긴 테스트 패턴 인가시간은 SoC 테스트에서의 2가지 주요 문제로 떠오르고 있다. 많은 양의 테스트 데이터에 대한 저장공간과 인가시간을 줄이기 위한 방안으로서 테스트 벡터들의 반복되는 성질을 이용하여 최대한 효율적으로 압축하는 다양한 방법들이 제시되었다. 본 논문에서는 SoC 테스트를 위한 효율적인 테스트 데이터 압축 방법을 제안한다. 제안된 방법은 테스트 벡터 집합을 분할하고 최대한 반복되는 공통부분을 제거함으로써 테스트 데이터를 압축한다. 이 압축방법은 O(n2)의 시간복잡도를 가지며, 간단한 디코딩 하드웨어를 사용한다. 여기서 n은 테스트 벡터 수이다. 제안된 압축방법은 빠르고 쉬운 디코딩을 함께 사용하여 기존의 복잡한 소프트웨어 방식의 압축방법에 견줄만한 수준의 효율성을 보여준다.
위성비행소프트웨어의 역할이 커짐에 따라 가상화 기술이 위성에도 도입되고 있다. 가상화 기술 중 하나인 하이퍼바이져는 하드웨어 자원의 가상화를 통해 하드웨어를 보다 효율적으로 쓸 수 있도록 도와준다. 동시에 가상화 기술은 소프트웨어의 복잡도를 낮추어 신뢰성을 높이는 역할도 수행한다. 한국항공우주연구원에서는 위성용 하이퍼바이져 중 하나인 XtratuM을 차세대 하이퍼바이져 후보군으로 선정하고, 이를 위성비행소프트웨어에 적용할 수 있는지 가능성을 확인하고 있다. XtratuM은 하드웨어 효율성을 높일 수 있지만 SMP를 지원하지 않아 인공위성의 자세제어 알고리즘과 같이 고성능/병렬처리가 필요한 부분에 적용이 어렵다는 한계점을 지니고 있다. 본 논문에서는 XtratuM의 기능 확장과 RTEMS XM-SMP BSP를 추가적으로 구현하여 RTEMS 기반 SMP를 지원하도록 만든다. XtratuM을 분석하여 SMP에 필요한 기능을 하이퍼콜로 추가한다. 그 후 BSP를 수정하여 SMP에 필요한 다수의 프로세서를 초기화하는 과정과 프로세서간의 통신을 위한 초기화 과정을 구현한다. 나아가 문맥 교환, 인터럽트와 같이 SMP에 의한 충돌이 발생할 수 있는 부분에 대해서도 개선한다. 이렇게 개발한 RTEMS XM-SMP는 4개의 코어를 가지고 있는 GR740 보드를 이용하여 SMP 벤치마크 함수를 수행하여 검증하고 SMP를 통한 성능 변화를 확인한다.
본 논문에서는 ASIC 설계 회로를 빠른 시간 내에 구현 및 검증할 수 있는 에뮬레이션 시스템 ACE(ASIC Emulator)를 제안한다 ACE는 EDIF 번역기, 라이브러리 변환기, 기술 맵퍼, 회로 분할기, LDF 생성기를 포함하는 에뮬레이션 소프트웨어와 에뮬레이션 보드, 논리 분석기를 포함하는 에뮬레이션 하드웨어로 구성된다. 기술 맵퍼는 회로 분할과 논리 함수식 추출, 논리 함수의 최소화, 논리 함수식의 그룹핑의 세 과정으로 이루어지며, 같은 기본 논리 블록에 할당되는 출력의 적항과 변수들을 많이 공유하게 하여 기본 논리 블록 수와 최대 레벨 수를 최소화한다. 에뮬레이션 보드의 배선 구조와 FPGA 칩이 갖는 제한 조건들을 만족시키면서 서로 다른 칩 사이에 연결된 신호선 뿐만 아니라 서로 다른 그룹 사이에 연결된 신호선 수의 최소화를 목적 함수로 하는 새로운 회로 분할 알고리듬을 제안한다 여러 FPGA 칩으로 구성된 에뮬레이션 보드는 완전 그래프와 부분 그래프를 결합한 새로운 배선 구조로 회로의 크기에 관계없이 칩 사이의 지연 시간을 최소화하도록 설계하였다. 논리 분석기를 이용하여 구현된 회로에서 검증을 원하는 내부신호에 대한 파형을 PC의 모니터로부터 관측할 수 있다. 제안한 에뮬레이션 시스템의 성능을 평가하기 위하여 상용 회로중 하나인 화면4분할기 회로를 에뮬레이션 보드상에 설계하여 동작 시간과 기능을 확인한 결과, 14.3MHz의 실시간 동작과 함께 기능이 완전함을 확인할 수 있었다.
시스템수준 설계방법론에서 널리 사용하고 있는 설계흐름도는 시스템명세, 시스템수준의 HW/SW 분할, HW/SW 통합설계, 가상 또는 물리적 프로토타입을 이용한 통합검증, 시스템통합으로 구성된다. 본 논문에서는 SystemVerilog와 SystemC를 기반으로 하여 신속한 기능검증이 가능한 native-code 통합검증환경과 클럭수준 검증까지 가능한 계층화 통합검증환경을 각각 구현하였다. Native-code 통합검증환경은 시스템수준 설계언어인 SystemC를 이용하여 HW/SW 분할단계를 수행한 후, SoC 설계의 HW부분과 SW부분을 각각 SystemVerilog와 SystemC로 모델링하여 상호작용을 하나의 시뮬레이션 프로세스로 검증한다. 계층화된 SystemVerilog 테스트벤치는 임의의 테스트벡터를 생성하여 DUT의 모서리 시험을 포함하는 검증환경으로 본 논문에서는 SystemC를 도입하여 다중 상속을 가지는 통합검증환경의 구성요소를 먼저 설계한 후, SystemVerilog DPI와 ModelSim 매크로를 이용하여 SystemVerilog 테스트벤치와 결합된 통합검증환경을 설계한다. 다중 상속은 여러 기초클래스를 결합한 새로운 클래스를 정의하여 코드의 재사용성을 높이는 장점을 가지므로, 본 논문의 SystemC를 도입한 통합검증환경 설계는 검증된 기존의 코드를 재사용할 수 있는 이점을 가진다.
본 논문은 uC/OS-II 실시간 커널이 관리하는 주 자원인 마이크로프로세서와 메모리를 가상화하여 하나의 마이크로프로세서 상에서 다수의 uC/OS-II 실시간 커널을 수행시키는 하이퍼바이저를 구현하였다. 마이크로프로세서는 uC/OS-II 실시간 커널이 처리하는 인터럽트들을 제어하는 알고리즘을 적용하여 가상화하고 메모리는 물리적 메모리를 파티션하는 방식을 사용하여 가상화한다. 개발된 하이퍼바이저 프로그램은 타이머 인터럽트와 소프트웨어 인터럽트를 가상화하는 인터럽트 제어 루틴들, 하이퍼바이저와 각 커널을 정상 수행 상태까지 유도하는 코드, 그리고 가상화된 두 커널 사이에 데이터 전달을 제공하는 API로 구성되어 있다. 기존의 uC/OS-II 실시간 커널은 개발한 하이퍼바이저 상에서 수행되기 위하여 소스 코드 레벨에서 수정이 필요하다. 구현된 하이퍼바이저는 Jupiter 32비트 EISC 마이크로프로세서 상에서 실시간 동작 시험 및 독립 수행 환경 시험을 거친 결과 가상화 커널이 정상적으로 수행되는 것을 확인하였다. 본 연구 결과는 다수의 내장형 마이크로프로세서가 요구되는 응용 분야에 활용될 경우 하드웨어 가격 절감효과를 얻을 수 있으며 내장형 시스템의 부피, 무게 및 전력 소비량을 줄이는 효과가 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.